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ABSTRACT

Instrumental variables estimation is a widely used
technique in many fields in the social sciences.
An important problem in applying the technique is
the choice of instrumental variables, since empirical
researchers often have many (valid) instrumental
variables from which to choose. According
to conventional asymptotic theory, the asymptotic
variance of an estimator decreases with the number
of instruments used for estimation. However,
instrumental variables estimators behave poorly when
there are many moment conditions. In particular, the
two-stage least squares (2SLS) estimator, which is
the most widely used instrumental variables estimator,
has a bias that is proportional to the number of
instruments. Appropriate selection of the number of
instruments is therefore essential for obtaining good
estimates.

The main purpose of this paper is to report the results
of Monte Carlo simulations conducted to investigate
the ability of bootstrap based criteria for choosing a
number of instrumental variables. We consider the
2SLS estimation of a linear simultaneous equations
model. The bootstrap is used to estimate the mean
square error (MSE) of the estimator, and then the
number of instruments is chosen by minimizing the
bootstrapped MSE.

The bootstrap is a method for approximating the
distribution of a statistic by computing the distribution
of that statistic under an estimated distribution of the
data (which is often the empirical distribution of the
data). In practice, we repeatedly draw samples from
an estimated distribution of the data and compute the
statistics of interest for each sample. The empirical
distributions of the statistics computed in this way are
used as estimates of the distributions of the statistics.

This paper considers three different bootstrap proce-
dures. The first is the “naive” bootstrap, in which
each bootstrap sample is drawn from the empirical
distribution of the data. In the second bootstrap
procedure, bootstrap samples are drawn from the
empirical distribution, which is modified so that the
instruments are orthogonal to the residuals of the

equation. The third bootstrap procedure involves an
analytical bias correction. When we compute the
bootstrapped MSE, we use an analytic approximation
of the bias rather than the bootstrap bias estimate.

The results of our experiments show that the “naive”
bootstrap does not work for the purpose of choosing
instruments. A large number of instruments tend to
be chosen by the “naive” bootstrap method. When
the sample size is small, the estimator based on the
choice of instruments implied by the “naive” bootstrap
performs similarly to the estimator based on the use of
all available instruments. When the bootstrap sample
is drawn so that the instruments are orthogonal to the
residuals, the estimator is more precise, but it does not
perform well in small samples. The problem is that
the bootstrap estimate of the bias is inaccurate. By
correcting the bias by using an analytic approximation
of the bias rather than the bootstrap bias estimate, the
bootstrap–based procedure improves the performance
of the estimator. With these modifications, the
bootstrap procedure performs equally as well, and
often better, than the selection method of Donald and
Newey (2001).
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1 INTRODUCTION

Empirical researchers can often choose between a
large number of instrumental variables. Using many
instrumental variables reduces the asymptotic vari-
ance of instrumental variables estimators according to
conventional asymptotic theory. However, in finite
samples, instrumental variables estimators behave
poorly when there are many instrumental variables
(see, e.g. Kunitomo (1980), Morimune (1983) and
Bekker (1994)). It is therefore important to choose the
number of instruments appropriately. In this paper,
we investigate the effectiveness of bootstrap based
criteria for choosing the number of instruments used
for estimation.

We consider the following linear simultaneous
equations model in which there is a single endogenous
regressor but no exogenous regressors:

yi = δYi + εi, for i = 1, . . . , N.

The variableyi is a scalar dependent variable andYi

is a scalar regressor that is correlated with the error
term, εi, so thatE(Yiεi) 6= 0. We aim to estimate
the parameterδ. A set of instruments,Zi, is available
for estimation and we assume that all the instruments
are valid: E(Ziεi) = 0. Let K denote the number
of instruments. For simplicity, we assume conditional
homoskedasticity of the errors:E(ε2i ) = σ2 for all
i. We also assume that(yi, Yi, Zi), i = 1, . . . , N
are i.i.d. Throughout the paper, we use the following
notation. For a sequence of vectors,{ai}N

i=1, we
definea asa = (ai, . . . , aN )′. For a matrixA, we
definePA asPA = A(A′A)−1A′. For example, the
vector Y is defined asY = (Y1, . . . , YN ) and the
matrixPZ is defined asPZ = Z(Z ′Z)−1Z ′.

Note that extending the model to incorporate multiple
endogenous regressors and/or exogenous regressors is
straightforward. For ease of exposition, we consider
only the model described above.

The most widely used estimator forδ is the 2SLS
estimator. The 2SLS estimator that usesZi as
instruments is defined as

δ̂ = (Y ′PZY )−1Y ′PZy.

Conventional asymptotic theory implies
√

N(δ̂ − δ) →d N(0, σ2H−1), asN → ∞,

whereH = E(YiZi)E(ZiZ
′
i)

−1E(ZiYi) and “→d”
represents “convergence in distribution.” It is easy
to show that the asymptotic variance decreases if
instruments are added. Hence, this theory implies that
all available instruments should be used.

However, this recommendation might be inappropri-
ate if there are a large number of instruments. The

2SLS estimator behaves poorly when there are many
instruments, primarily because of the associated bias
(see, e.g., Kunitomo (1980), Morimune (1983) and
Bekker (1994)). The finite sample bias of the 2SLS
estimator is approximately

E(δ̂ − δ) ≈ σε,uH−1 K

N
, (1)

whereσε,u = E(εiui) and ui is the residual from
the regression of the endogenous variable,Yi, on the
sets of instruments,Zi. See, e.g., Hahn and Hausman
(2002a, 2002b) for a derivation of the formula for the
bias. The bias of the 2SLS estimator is proportional to
the number of instrumental variables. Thus, it is not
necessarily desirable to use all available instruments
because of the bias–variance trade-off. Hence, a
good estimator requires the appropriate selection of
instruments.

In this paper, we report the results of Monte Carlo
experiments designed to examine the finite sample
performance of instrument selection methods based
on the bootstrap. The bootstrap is used to estimate
the MSE of the 2SLS estimator. We then minimize
the estimated MSE to determine the number of
instruments used for estimation. The results show that
the “naive” bootstrap method is not effective for the
purpose of instrument selection. Two modifications
are needed. First, the residuals must be made
orthogonal to the instruments so that the moment
conditions hold under the bootstrap distribution.
Second, we use an analytic approximation of the bias
rather than the bootstrap bias estimate in computing
the MSE. Our simulations reveal that, once these
modifications have been made, choosing the number
of instruments by using bootstrap–based criteria is
effective in improving the precision of the estimator.

Donald and Newey (2001) first proposed choosing the
number of instruments by minimizing the estimated
MSE. They calculate an analytic approximation of the
MSE and use it as a criterion function. Their work
has been extended and applied to conditional moment
restriction models (Donald, Imbens, and Newey
(2002)), time-series models (Kuersteiner (2002)) and
dynamic panel data models (Okui (2005)). In
our experiments, we compare the performance of
bootstrap based procedures with that of the instrument
selection method proposed by Donald and Newey
(2001). We find that the bootstrap–based method
performs as well, and often better, than does their
procedure.

Bootstrap–based methods possess several advantages
over methods based on analytical approximation
of the MSE. For example, the bootstrap enables
consideration of criteria other than the MSE, such
as the mean absolute deviation. Computing the
bootstrapped mean absolute deviation is as easy as
computing the bootstrapped MSE. However, it is
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difficult to approximate the mean absolute deviation
of an instrumental variables estimator analytically.
A disadvantage of bootstrap–based criteria is their
computational cost, although we expect this to
diminish over time.

Several studies apply bootstrap methods to address
the problem of “many instruments”. Inoue (2005)
proposes using a bootstrap method to choose the
number of instruments. His method minimizes
the approximate coverage error of the confidence
intervals; the coverage error is estimated by the
bootstrap. Flores-Lagunes (2002) proposes a bias-
corrected 2SLS estimator in which the bias is
estimated by using a bootstrap method, although his
main concern is the bias caused by weak instruments.
Kleibergen (2004) investigates the applicability of the
bootstrap critical values for various test statistics when
there are many instruments.

The objective of this paper (and the paper by
Donald and Newey (2001)) differs from those on
the selection methods proposed by Andrews (1999)
and Andrews and Lu (2001). The goal of Andrews
(1999) and Andrews and Lu (2001) is to distinguish
between correct moment conditions and incorrect
ones. In this paper, we assume that all moment
conditions are correct, and then select the number of
moment conditions to avoid the problem of “many
instruments.”

The organization of the rest of the paper is as follows.
In Section2, we describe the Monte Carlo design. In
Section3, we explain bootstrap based procedures for
choosing the number of instruments. In Section4,
we report the results of the Monte Carlo experiments.
Suggestions for future research are offered in Section
5.

2 DESIGN

In this section, we explain the Monte Carlo design,
following Donald and Newey (2001). Our data-
generating process is the following model:

yi = δYi + εi,

Yi = π′Zi + ui,

for i = 1, . . . , N , whereYi is a scalar,δ is a scalar
parameter of interest,Zi ∼ i.i.d.N(0, IK) and

(
εi

ui

)
∼ i.i.d.N

((
0
0

)
,

(
1 c
c 1

))
.

The integerK is the total number of instruments. We
set the true value ofδ asδ = 0.1, and then examine
how well each estimator estimatesδ.

In this framework, each experiment is indexed by the
vector of specifications,(N,K, c, π′).We useN =

100 andN = 500, and setK = 20 if N = 100 and
setK = 25 if N = 500. The degree of endogeneity is
summarized byc, which is set toc = 0.1, 0.5 and0.9.

We consider the specification of the vectorπ used
in Donald and Newey (2001). LetR2

f denote the
theoreticalR2 of the first-stage regression. Thek–th
element ofπ is

πk = c(K)
(

1 − k

K + 1

)4

,

wherec(K) is chosen to satisfyπ′π = R2
f/(1−R2

f ).
Note thatR2

f = π′π/(π′π + 1) (Hahn and Hausman
(2002a)). We useR2

f = 0.1 and0.2. The strength
of the instruments decreases moderately ink. We
perform an experiment by assuming that the rank
ordering of the instruments is known. That is, the
instruments are ordered according to their strengths,
and we choose only the number of instruments used
for estimation.

We also tried other specifications ofπ. The results
of the experiments based on other specifications
are available from the author on request. The
relative performance of each estimator is robust to the
specification ofπ.

3 PROCEDURES

In this section, we describe the procedures in relation
to which estimation performance is examined in the
Monte Carlo simulations. As benchmarks, the 2SLS
estimator, which uses all the available instruments
(“2SLS” in the tables), and the 2SLS estimator, which
uses the number of instruments chosen on the basis of
the procedure of Donald and Newey (2001) (“DN” in
the tables), are examined in the experiments. Three
bootstrap–based procedures are explained in detail.

The bootstrap is a way of approximating the
distribution of a statistic by computing the distribution
of the statistic based on an estimated distribution of
the data. We use bootstrap methods for approximating
the MSE of the 2SLS estimator, and then use the
bootstrapped MSE as a criterion function for choosing
the number of instruments.

First, we consider the “naive” bootstrap, in which
each bootstrap sample is drawn from the empirical
distribution of the data.

Algorithm 1 (B1). 1. Draw the bootstrap sample,
{y∗

i , Y ∗
i , Z∗

i }N
i=1, from the empirical distribu-

tion of the data,{yi, Yi, Zi}N
i=1.

2. Compute the 2SLS estimate for
the bootstrap sample: δ̂∗(k) =
(Y ∗′Pz(k)∗Y

∗)−1Y ∗′Pz(k)∗y
∗, for each k.
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The vectorzi(k) is the vector containing the
first k elements of the vectorZ∗

i .

3. Repeat Steps 1 and 2B times.

4. Compute the following bootstrapped MSE:

BMSE(k) =
1
B

B∑

b=1

(δ̂∗b (k) − δ̂(k))2,

where δ̂∗b (k) is the 2SLS estimator that uses
kinstrumentsfor the b–th bootstrap sample
and δ̂(k) is the 2SLS estimator that usesk
instruments.

5. Choose the number of instruments that mini-
mizes BMSE(k).

Hahn (1996) shows that the asymptotic distribution
of δ̂∗b (k) is the same as that of̂δ:

√
N(δ̂∗b (k) −

δ̂(k)) →d N(0, σ2H−1). However, as shown by the
simulations, this bootstrap procedure is not effective
for instrument selection. The “naive” bootstrap needs
to be modified in two ways. First, the moment
conditions are re-centered so that they hold under
the bootstrap distribution. Second, we replace the
bootstrap estimate of the bias by a bias estimate based
on an analytic approximation of the bias.

Consider the first modification. The moment
conditions do not hold under the empirical distribution
in general. This is because, in general, there is no
value ofδ that satisfies

∑N
i=1 zi(k)(yi −Yiδ)/N = 0,

when the number of instruments is larger than the
number of parameters. The empirical distribution
therefore fails to provide a good approximation of the
current model. To solve this problem, we consider
the following bootstrap procedure, in which each
bootstrap sample is drawn from a distribution that
satisfies the moment conditions.

Algorithm 2 (B2). 1. Let δ̂ be a consistent esti-
mate ofδ.

2. Letε̃ = (I −PZ)(y− δ̂Y ). Draw the bootstrap
sample, {Y ∗

i , Z∗
i , ε∗i }N

i=1 from the empirical
distribution of{Yi, Zi, ε̃i}N

i=1. Lety∗
i = δ̂Y ∗

i +
ε∗i .

3. Compute the 2SLS estimates for
the bootstrap sample: δ̂∗(k) =
(Y ∗′Pz(k)∗Y

∗)−1Y ∗′Pz(k)∗y
∗ for

k = 1, . . . ,K. The vectorzi(k) is the
vector containing the firstk elements of the
vector,Z∗

i .

4. Repeat Steps 2 and 3B times.

5. Compute the following bootstrapped MSE:

BMSE(k) =
1
B

B∑

b=1

(δ̂∗b (k) − δ̂)2,

whereδ̂∗b (k) is the 2SLS estimator that usesk
instruments for theb–th bootstrap sample.

6. Choose the number of instruments that mini-
mizes BMSE(k).

In the experiments, the preliminary estimate,δ̂, is
obtained by using the number of instruments that
minimizes the first-stage cross-validation criteria, as
in Donald and Newey (2001).

In Step 2, we multiply the matrix(I−PZ) by the vec-
tor of residuals,(y − δ̂Y ). The transformed residuals
are orthogonal to the instruments:

∑N
i=1 Ziε̃i/N =

0. This process therefore re-centers the moment
conditions, so that the moment conditions hold under
the bootstrap distribution. Several studies demonstrate
the importance of re-centering of the moment
conditions (see, e.g., Horowitz (2002, Section 3.7) and
Hall and Horowitz (1996)). For example, re-centering
is needed for asymptotic refinements to the size of the
t test and for the coverage probability of a confidence
interval. Moreover, it is important to re-center the
moment conditions to estimate the distribution of the
test statistic for over-identifying restrictions by the
bootstrap.

It is also important to use the same bootstrap sample
to compute the MSEs of 2SLS estimators with
different sets of instruments. When we compute the
bootstrapped MSE of the 2SLS estimator that usesk
instruments, we could consider using the residuals that
are orthogonal to onlyk instruments. This process,
however, causes a problem since different data sets
are used to compute the MSEs of different estimators.
This makes the comparison of estimators difficult.

The estimate for the bootstrap sample,δ̂∗b , is centered
at δ̂ here. Note that̂δ is the true value ofδ under
the bootstrap distribution, sincêδ satisfies the moment
conditions under the bootstrap distribution.

Theorem 3.1 of Freedman (1984) provides a
theoretical justification for the bootstrap scheme,
“B2.” It shows that the distance between the
distribution of

√
N(δ̂∗(k) − δ̂) and the distribution of√

N(δ̂(k) − δ) approaches zero asymptotically. This
property is known as the bootstrap principle.

Lastly, we consider the bootstrap procedure in which
the bias of the estimator is corrected “manually.” It
has been observed that the bootstrap is not always
effective in measuring the bias of an estimator. As
shown in the next section, this problem arises in the
context of our experiments. To mitigate this problem,
we replace the bootstrap estimate of the bias by a
bias estimate based on an analytic approximation of
the bias. This strategy is also used by Härdle and
Bowman (1988) and Nishiyama and Robinson (2005)
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in different contexts. The bootstrap procedure based
on this modification is summarized as Algorithm 3.

Algorithm 3 (B3). 1. Let δ̂ be a consistent esti-
mate ofδ.

2. Letε̃ = (I −PZ)(y− δ̂Y ). Draw the bootstrap
sample, {Y ∗

i , Z∗
i , ε∗i }N

i=1 from the empirical
distribution of{Yi, Zi, ε̃i}N

i=1. Lety∗
i = δ̂Y ∗

i +
ε∗i .

3. Compute the following 2SLS estimates
for the bootstrap sample: δ̂∗(k) =
(Y ∗′Pz(k)∗Y

∗)−1Y ∗′Pz(k)∗y
∗ for

k = 1, . . . , K

4. Repeat Steps 2 and 3B times.

5. Compute the following bootstrapped MSE:

BMSE(k) =
1
B

B∑

b=1

(δ̂∗b (k) − δ̄∗(k) + Ĉ(k))2,

where δ̂∗b (k) is the 2SLS estimator that
uses k instruments for theb–th bootstrap
sample, δ̄∗(k) =

∑B
b=1 δ̂∗b (k)/B, Ĉ(k) =

(Y ′PZY )−1Kσ̂ε,u, and σ̂ε,u =
∑N

i=1(yi −
δ̂Yi)(Yi − zi(Z ′Z)−1Z ′Y )/N .

6. Choose the number of instruments that mini-
mizes BMSE(k).

The only difference between B2 and B3 arises in Step
5. Note that

1
B

B∑

b=1

(δ̂∗b (k) − δ̂)2

=
1
B

B∑

b=1

(δ̂∗b (k) − δ̄∗(k))2 + (δ̄∗(k) − δ̂)2,

where the first term on the right-hand side is the
bootstrap estimate of the variance and the second
term corresponds to the square of the bootstrap bias
estimate. We replace the bootstrap bias estimate,
δ̄∗(k) − δ̂, by an estimate of the bias based on the
analytic approximation,Ĉ(k) (c.f. formula (1) in
Section2).

It is not difficult to show that bootstrap procedure B3
also satisfies the bootstrap principle. A proof similar
to Theorem 3.1 in Freedman (1984) could be used.

One advantage of the bootstrap is that it enables
the use of many different criteria. For example,
the algorithm for the bootstrapped mean absolute
deviation criterion is similar to Algorithm 3 except
that we replace “BMSE(k)” in Step 5 by

BA(k) =
1
B

B∑

b=1

∣∣∣δ̂b(k) − δ̄∗(k) + Ĉ(k)
∣∣∣ .

Table 1.Monte Carlo results:R2 = 0.1

2SLS DN B1 B2 B3

c = 0.1, N = 100
BIAS 0.0586 0.031 0.0655 0.0575 0.0398
MAD 0.134 0.201 0.126 0.14 0.177
CR 0.95 0.972 0.962 0.946 0.964

c = 0.1, N = 500
BIAS 0.0306 0.0151 0.0329 0.0302 0.0246
MAD 0.076 0.0881 0.757 0.0779 0.0844
CR 0.961 0.954 0.967 0.956 0.949

c = 0.5, N = 100
BIAS 0.307 0.153 0.317 0.283 0.154
MAD 0.308 0.245 0.318 0.291 0.237
CR 0.51 0.833 0.5 0.586 0.805

c = 0.5, N = 500
BIAS 0.15 0.0663 0.138 0.0929 0.0716
MAD 0.151 0.1 0.146 0.112 0.104
CR 0.676 0.895 0.711 0.817 0.887

c = 0.9, N = 100
BIAS 0.566 0.235 0.565 0.378 0.26
MAD 0.566 0.324 0.565 0.378 0.295
CR 0.017 0.749 0.047 0.41 0.675

c = 0.9, N = 500
BIAS 0.273 0.0975 0.15 0.114 0.101
MAD 0.273 0.126 0.153 0.128 0.116
CR 0.168 0.844 0.657 0.784 0.829

On the other hand, it is difficult to calculate an analytic
approximation of some quantities, such as the mean
absolute deviation.

4 RESULTS

In this section, we report the results of the Monte
Carlo experiments. The experiments are performed
by using Ox 3.40 (Doornik (2002)) for Linux. The
number of Monte Carlo replications is set to 1000 and
the number of bootstrap replications is set to 500 in all
experiments.

Tables 1 and 2 report the results of the experiments.
For each estimator, we compute the median bias
(BIAS), the median absolute deviation (MAD) and the
coverage rate (CR) for a 95% (Wald-type) confidence
interval. We use these “robust” measures because
of concerns about the existence of moments of
estimators. The measure “MAD” would best represent
the performance of each estimator. The magnitude of
“BIAS” indicates the number of instruments chosen
by each procedure. Roughly, a large “BIAS” implies
a large number of instruments.

B1 suggests a large number of instruments. It
produces a good estimate whenc = 0.1, in which
case, many instruments should be used, but yields a
poor estimate whenc = 0.5 or 0.9, in which case,
the optimal number of instruments is small. For cases
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Table 2.Monte Carlo results:R2 = 0.2

2SLS DN B1 B2 B3

c = 0.1, N = 100
BIAS 0.0422 0.0166 0.0458 0.0412 0.0241
MAD 0.111 0.13 0.104 0.113 0.122
CR 0.949 0.957 0.962 0.941 0.949

c = 0.1, N = 500
BIAS 0.0161 0.0094 0.0176 0.0151 0.0134
MAD 0.0545 0.0587 0.0547 0.055 0.057
CR 0.959 0.949 0.959 0.959 0.952

c = 0.5, N = 100
BIAS 0.209 0.0992 0.21 0.169 0.0986
MAD 0.209 0.157 0.212 0.186 0.157
CR 0.641 0.874 0.642 0.729 0.845

c = 0.5, N = 500
BIAS 0.0806 0.0342 0.0524 0.0445 0.0382
MAD 0.0861 0.064 0.0695 0.0671 0.0654
CR 0.81 0.928 0.877 0.905 0.922

c = 0.9, N = 100
BIAS 0.384 0.134 0.342 0.191 0.144
MAD 0.384 0.186 0.342 0.202 0.173
CR 0.104 0.824 0.29 0.679 0.796

c = 0.9, N = 500
BIAS 0.145 0.0525 0.0695 0.0595 0.0528
MAD 0.145 0.0737 0.0796 0.0732 0.0702
CR 0.475 0.889 0.841 0.875 0.886

with N = 100 andR2 = 0.1, the performance of B1
is similar to that of 2SLS. For cases withN = 500
and R2 = 0.2, B1 yields a lower median absolute
deviation of the estimator. The use of procedure B1
improves the performance of the 2SLS estimator only
if there is a large sample and/or strong instruments.
Since the problem of “many instruments” is serious
in small samples, a procedure that needs a large
sample to solve the problem is not particularly useful.
Moreover, even when the use of B1 improves the
performance of the estimator, the improvement is
small relative to that achieved by other instruments
selection procedures.

Procedure B2 provides more precise estimates than
does 2SLS (at least in terms of the median absolute
deviation). In particular, B2 performs well whenN =
500. DN and B2 perform similarly whenN = 500
and c = 0.5 or 0.9, and B2 outperforms DN when
N = 500 and c = 0.1. When the sample is small
(N = 100) and the degree of endogeneity is moderate
or high (c = 0.5 or 0.9), the number of instruments
chosen on the basis of B2 is above the optimal number
and B2 does not perform well when compared with
DN and B3. Whenc = 0.1, B2 outperforms DN,
but this seems to be because B2 tends to imply that a
relatively large number of instruments is chosen.

B2 performs poorly because the bootstrap estimate of
the bias is inaccurate. Table 3 compares the 2SLS
bias with its bootstrap estimate whenR2 = 0.1. In

Table 3. The bias of the 2SLS estimator and the
bootstrap estimate of the bias:R2 = 0.1

c N 2SLS B2

0.1 100 0.0568 -0.01
500 0.028 0.02

0.5 100 0.308 0.126
500 0.148 0.0979

0.9 100 0.567 0.242
500 0.269 0.175

the columns “2SLS” and “B2” are the actual bias
of the 2SLS estimator, which uses all the available
instruments, and the mean of the bootstrap estimate of
the bias, respectively. Table 3 shows that the bootstrap
underestimates the bias that is due to the inclusion
of many instruments. This property of the bootstrap
explains why B2 implies that a relatively large number
of instruments is chosen.

Using procedure B3 improves the precision of the
estimator substantially whenc = 0.5 and0.9. When
c = 0.1, B2 outperforms B3, but B3 outperforms
DN. Note that instrument selection is important when
there is a high degree of endogeneity (see formula (1)
in Section 2). It is worth noting that B3 produces a
smaller median absolute deviation than does DN in
most cases.

To summarize, we find that the “naive” bootstrap is
ineffective in choosing the number of instruments.
Use of the “naive” bootstrap tends to lead to a large
number of instruments being chosen. When the
sample is small, the performance of the estimator
based on the choice of instruments implied by the
“naive” bootstrap is similar to that of the estimator
based on the use of all available instruments. If
the bootstrap sample is drawn so that the moment
conditions hold under the bootstrap distribution, the
estimator is more precise, but it does not perform well
in small samples. The problem is that the bootstrap
underestimates the bias caused by the use of many
instruments. When the bias is corrected by using
an analytic approximation of the bias rather than the
bootstrap bias estimate, the procedure’s performance
is satisfactory. With these modifications, the bootstrap
procedure performs as well, and often better, than
does the selection method of Donald and Newey
(2001).

5 DISCUSSION

In this paper, we investigate the effectiveness of
bootstrap based criteria for choosing the number
of instruments used for estimation by Monte Carlo
simulations. The results are encouraging and
should stimulate further research on bootstrap based
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procedures. In particular, two problems seem
important.

First, a theoretical justification for using the bootstrap
procedure examined in this paper is provided by an
argument based on the theory of Freedman (1984),
in which the number of instruments is assumed to be
fixed. However, the choice of instruments is important
when there are many instruments. In this case,
double asymptotics, under which both the number
of instruments and the sample size approach infinity,
would provide a better approximation. Theoretical
research on the properties of the bootstrap under
double asymptotics is therefore desirable.

Second, there are many other situations in which the
problem of many moment conditions is important.
For example, dynamic panel data models typically
yield a large number of moment conditions. Hence,
it would be interesting to investigate the effectiveness
of bootstrap based criteria in other situations.
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