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EXTENDED ABSTRACT 

The Invisible Modelling Environment (TIME) is a 
.NET based model development framework, 
supporting model developers in the creation and 
testing of algorithms and in the development of 
standalone modelling applications. TIME 
underpins the modelling products in the 
Catchment Modelling Toolkit 
(http://www.toolkit.net.au); a community 
developed collection of water quantity, water 
quality and related models. 

TIME is founded on a compact architecture with a 
series of subsystem frameworks handling issues 
such as data IO, data visualisation and non-linear 
optimisation. Since the last congress, TIME has 
undergone significant functional evolution, 
although the major architectural elements remain 
largely intact. Key additions are in the area of 
spatial and temporal data analysis where a series 
of GIS-like tools and novel algorithms have been 
implemented. Additionally a series of generic, 
non-linear optimisation tools have been 
incorporated and used in several Toolkit products. 
A visual tool for the integration of models has 
been created based on ideas encompassed in 
ICMS. Additionally, the underlying framework 
has been extended to include the representation 
and visualisation of data uncertainty. 

Much of the evolution of the framework and the 
libraries has been driven by an increasing 
stakeholder base of model developers and end 
users, which presents its own challenges for 
'community' developed software systems. TIME 
is now the development platform for 
approximately 50 model developers from a range 

of technical backgrounds from professional 
software developers to PhD hydrologists. These 
developers approach the framework from one of 
several perspectives; as researchers implementing 
and testing model algorithms using the model 
testing tools; as software developers who create 
standalone modelling tools and as framework 
developers incrementally improving framework 
functionality. These users make use of a range of 
community resources, including shared source code 
access, an email discussion forum and formal 
training workshops. 

TIME has proven to be an effective platform for the 
development of standalone modelling tools with 
high quality user interfaces. For example, the 
Stochastic Climate Library draws on the 
framework's inbuilt capabilities for visualisation, 
data handling and temporal analysis to create a 
polished modelling product producing stochastic 
climate replicates.  The Stochastic Climate Library 
experience is a good case study of TIME's 
evolution, by illustrating how a product can be co-
developed with researchers and professional 
programmers, and how direct user requirements for 
the end product can feed useful functionality back 
into the underlying modelling framework. This 
library includes a collection of models which 
already existed in various forms, and a number of 
approaches were used to bring them into TIME, 
including porting to newer dialects of the original 
language (Fortran), wrapping as DLLs, and porting 
to C#, a language with additional capabilities.  

This paper builds upon the theoretical foundations 
of TIME to examine some of the practical issues in 
the use, adoption and evolution of the framework. 
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1. INTRODUCTION 

TIME (Rahman et al. 2003) is a model 
development framework intended to support 
developers when coding new model algorithms, 
testing algorithms, and delivering models as 
customised, standalone applications. 

TIME underpins many of the modelling products 
in the Catchment Modelling Toolkit 
(http://www.toolkit.net.au), including E2 (Perraud 
et al. 2005) and Rainfall Runoff library (RRL) 
(Perraud et al. 2003).  

The high level conceptual structure of the 
framework has remained relatively stable over the 
previous years, although there has been significant 
expansion in terms of library capability, along with 
the number of active model and application 
developers. The concepts of model based 
metadata, and the use of these metadata to create 
‘model processing tools’ (Rahman et al. 2004) 
remain central to the framework, and have been a 
useful teaching tool when training new TIME 
developers. The suite of metadata based tools has 
extended to include a graphical model integration 
tool, as well as tools for managing temporal and 
spatial-temporal data during model runs. Other 
improvements include a range of GIS-like spatial 
analysis and terrain analysis tools along with a 
capability for representing and visualising data 
uncertainty. 

The range of capabilities added to TIME reflects 
the diversity of its user and developer base. While 
it was originally expected that TIME would 
support a relatively large number of ‘algorithm 
developers’, and a relatively small number of 
‘application developers’, it has transpired that 
more than half of the TIME users undertake 
application development tasks within the 
framework. This has required some reassessment 
of where emphasis and resources should be placed 
when providing support to framework users. 
 

2. FRAMEWORK FOUNDATIONS 

TIME (Rahman et al. 2003) is a .NET based model 
development framework intended to support three 
key aspects of model development: 

1) Coding new model algorithms in a high 
level language such as C# or Visual 
Basic, 

2) Testing and applying new models using a 
range of visualisation and analysis tools, 
and 

3) Delivering models as standalone 
applications. 

Model developers using the framework may make 
use of all of these aspects at various times, 
although it is common for individual users to focus 
on just algorithm development and testing (aspects 
1 + 2) or primarily application development 
(aspect 3). While all three aspects rely on the same 
libraries of software components, a user’s focus 
will determine which subsystems they encounter 
as end users (interacting with components at 
runtime) or as developers (writing code that 
consumes components). 

2.1. Layered Architecture 

The high level architecture of TIME is reproduced 
in figure 1 as a layered approach. Each layer 
contains software components which consume 
components from the lower layers. In this respect, 
a user focussed on algorithm development will 
write components within the ‘Models’ layer. These 
model components will consume components in 
the data and kernel layers, while at runtime the 
user will be able to interact with their model 
component using components provided in the 
Visualisation and User Interface layer. By contrast, 
an application developer will create a standalone 
software product, which consumes components 
from all layers. TIME based applications include 
TIME’s visualisation components which can be 
customised and used in the same way as standard 
Windows user interface components such as 
buttons and text boxes. 
 

 
Figure 1: Main architectural layers of TIME 

The ability for developers to make use of the 
framework at a variety of levels is a key advantage 
of TIME, making it useful for a range of model 
development tasks. 

2.2. Component Metadata 

TIME includes a system for marking-up 
components with structured metadata attributes 
(Rahman et al. 2004). These attributes are used to 
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categorise model variables (eg Input, Parameter, 
State, Output) and describe constraints such as 
units and numeric ranges. The metadata is 
implemented using the .NET Custom Attribute 
capability (ISO, 2003), and is retained within the 
compiled components and is subsequently 
available at runtime to tools within TIME. The 
metadata capability has previously been used to 
coordinate the execution of temporal models 
(Rahman et al. 2003) and for the development of 
generic, non-linear optimisation components 
(Perraud et al. 2003). This capability continues to 
be developed and exploited, and has more recently 
been used to underpin a river network based 
catchment framework within TIME (Perraud et al. 
2005) and a graphical tool for model integration. 

3. KEY DEVELOPMENTS 

The high level concepts of TIME are relatively 
stable, and much of the ongoing development 
focuses on the functionality of the data analysis 
libraries and user interface components. 
Additionally, there is a focus on several model 
support components, including a system for 
representing and visualising data uncertainty and a 
tool for visual model integration. 

There has also been significant effort in the 
development of a customised framework for 
catchment modelling, using TIME as a base 
(Perraud et al. 2005) as well as a framework for 
the parallel execution of TIME models using grid 
computing (Davis et al. 2005). 

3.1. Data Analysis Libraries and Tools 

TIME has a library of spatial and temporal data 
analysis routines, including Boolean and 
mathematical operations on data, time series 
analysis, digital terrain analysis and GIS-like 
spatial analysis routines. 

While these routines are auxiliary to the 
underlying architecture of the framework, they 
represent a significant amount of reusable 
functionality that makes development within 
TIME more efficient. 

A Boolean ‘Rule Engine’ allows users to construct 
operations that derive new data sets based on 
Boolean combinations and operations on existing 
data sets. For example, a user might represent a 
change in land use by deriving a new land use map 
with the following rule: 
 

WHERE elevation is between 600m and 800m  

AND current land use is grazing or 
broadacre agriculture 

SET new land use to forest 

ELSE set new land use to current land use 

User’s construct rules, which are made up of a 
predicate, a success action and an unsuccessful 
action (else action). Predicates can be made up of a 
nested combination of basic predicates, which 
operate on a data set (eg elevation) and a test (eg 
=, <, <>). Rules are evaluated at each ‘element’ of 
a source data set to produce the corresponding 
element of a resultant data set. As all data sets in 
TIME can be evaluated using a single, one-
dimensional element indexing system, the rule 
engine can be applied equally well to raster data 
sets (as in the land use example), time series (for 
example, to represent an ecologic response 
function based on flow and water quality) or other 
data types. Users construct predicates and rules 
using a graphical user interface (figure 2). The 
Rule Engine GUI is developed as a control which 
can be deployed in a variety of applications. 

Figure 2: Rule engine 

TIME includes a range of digital terrain analysis 
components, including D8 and D-infinity 
(Tarboton 1997) flow routing, derivative terrain 
properties such as slope mapping and wetness 
indices, and watershed delineation. These 
components are widely used within Catchment 
Modelling Toolkit products, and reduce the need 
for Toolkit users to pre-process model data in a 
GIS. TIME also includes a wider range of GIS-like 
components for spatial and zonal analysis, 
including tools for merging and processing 
polygon coverage and converting between raster 
and polygonal representations. The inclusion of 
sophisticated spatial operations raises a 
philosophical question about the extent to which a 
spatio-temporal modelling environment such as 
TIME should seek to emulate a commercial GIS, 
or even open source GIS efforts such as GRASS 
(GRASS 2005). We have made a decision to not 
develop a comprehensive GIS capability upfront, 
but rather to develop routines and components as 
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are required for inclusion in Toolkit products, or 
requested by TIME users. This approach is 
complemented by the ability to interchange raster 
and vector data with common GIS systems such as 
Arc™ (ESRI 2005) and MapInfo™ (MapInfo 
2005). 

3.2. Data Uncertainty 

The quantification, representation and reporting of 
uncertainty is a recurrent concern in modelling, 
irrespective of the discipline (Jolma and Norton 
2005). The increasing need to make management 
decisions based on a quantified risk will only make 
this concern more pressing. Quantifying the 
uncertainty of model outputs is non-trivial 
theoretically, and difficult practically. 

TIME currently supports the representation and 
visualisation of uncertainty for its data. The 
uncertainty is described at the level of the abstract 
class Data, parent of any data in TIME, e.g. time 
series or raster. Data uncertainty is defined as the 
representation of the uncertainty for each of its 
items, i.e. by assigning a probability density 
function (PDF) for each data item. Data 
uncertainty may thus range from being simply 
described as a Gaussian PDF centred on each item 
value and with a standard deviation that is a 
fraction of this item value, or a complex PDF 
derived from running a Monte-Carlo simulation 
and summarising the characteristics of the 
realisations for each data item. 

Visualisation of data uncertainty is currently 
supported for time series data principally. Even in 
situations where fully-fledged uncertainty 
estimation cannot be performed it is an important 
communication tool to convey it to decision 
makers. The uncertainty can be displayed by 
showing a confidence interval around the predicted 
time series, or using a “fuzzy box” around the 
prediction based on the PDF for each data item 
(figure 3). The Stochastic Climate Library (SCL), 
case study later in this paper, uses the data 
uncertainty estimations of TIME to determine a 
confidence interval on the cumulative probability 
functions of stochastically generated rainfall. 

 

Figure 3: Time series uncertainty visualisation 

3.3. Model Integration Tool 

The canvas tool is a component of TIME that gives 
an application the ability to visually link models 
together and run the result. The tool provides a 
rapid and simple way to develop new modelling 
functionality and is accessible to users who are not 
programmers. Model testing is enhanced through 
the use of data outputs from other models as inputs 
to the test model. Automated processing of 
sequential data analysis can be achieved, and the 
visual construction can provide a user a clear 
picture of how a model really works, compared to 
traditional programming methods.  

The canvas makes use of TIME model attributes to 
ensure the validity of composite models. For 
example, the Input and Output attributes are used 
to guarantee inputs never connect to outputs. The 
use of attributes is not mandatory for the canvas; 
they simply provide guidance for the user. 

The Model Integration Tool is a proposed project 
that will use the canvas at its heart, and provide a 
much richer feature set than that currently 
available from just the canvas. Features planned 
include, the ability to save composite models 
which can then be used in further composite 
models, professional user interfaces, and 
potentially, connections to data stores for easy 
access to data. 

Figure 4 is a screenshot of a prototype that uses the 
canvas. The process shown consists of a catchment 
delineation process, sending its resulting sub-
catchment map to a raster extraction routine. This 
extracted sub-catchment is then sent to a model 
that converts the raster into a polygon. 
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Figure 4: System Model Tool 
 

4. USER BASE 

Use of TIME is expanding, predominately 
amongst Australian natural resource management 
organisations. There are currently approximately 
50 active users of TIME. This includes the 
developers of fifteen TIME-based Catchment 
Modelling Toolkit products. 

TIME developers come from a range of technical 
backgrounds, and focus on quite different 
components within the framework. TIME 
developers stay in touch through a combination of 
training workshops, face to face meetings and an 
email discussion group. 

4.1. User Profile 

The TIME users range from senior research 
scientists and PhD students, to professional 
software developers. While these users are 
predominately from Australian organisations, they 
are drawn from a range of academic institutions, 
government agencies and private industry. The 
modelling needs of these users vary across a range 
of spatial and temporal modelling domains. 

It is possible to subjectively categorise TIME users 
as having a primary focus on algorithm 
development, a primary focus on application 
development, or a focus on both algorithm and 
application development. Referring to the three 
aspects of model development supported by TIME 
(Section 2), algorithm developers focus on coding 
algorithms using the TIME data libraries, and 
testing algorithms using the model testing tools. 
Application developers, also use the data libraries 
and testing tools, but create standalone products by 
developing custom user interfaces that consume 
TIME’s user interface and visualisation 

components. It was originally expected that only a 
small number of TIME users would undertake 
application development, with most users only 
creating and testing underlying algorithms. It has 
transpired that the majority of current TIME users 
do create custom user interfaces and standalone 
applications. This has resulted in more 
development emphasis being placed on reusable 
user interface components as a key value 
proposition to new users. This also required a 
reassessment of the training material to include 
information on making programmatic use of the 
TIME visualisation system. 

The wide focus on application development also 
reflects an early immaturity in the model testing 
tools, which required developers of most complex 
models to create a user interface for the model. 
There has been a recent resurgence of TIME users 
who predominately build algorithms, reflecting a 
growing maturity in the model test tools including 
the automatic user interface generator, thereby 
allowing algorithm developers to build and test 
more sophisticated models without reverting to 
custom user interface development. 

4.2. Community Resources 

As TIME users move from being beginner 
framework users through to expert developers, 
they make use of a range of support services which 
broadly constitute the TIME community. These 
services include training material (available at 
http://www.tookit.net.au/) and practical 
workshops, an email discussion list, face to face 
meetings and source code access to the underlying 
framework. 

Most new TIME developers are introduced to the 
framework with a workshop lasting between two 
to four days. The shorter workshops focus on 
algorithm development with TIME, and testing 
new algorithms with generic tools such as the user 
interface generator and non-linear optimisers. 
These workshops accommodate developers from a 
wide range of technical backgrounds, from 
professional programmers, to modellers with very 
minimal programming background. The longer 
workshops add material on developing standalone 
applications with the TIME user interface and 
visualisation components, along with material on 
customising existing Catchment Modelling Toolkit 
products such as the Rainfall Runoff Library 
(Perraud et al. 2003) and E2 (Perraud et al. 2005). 

Workshop participants receive a pre-compiled 
version of TIME which is sufficient for developing 
and testing algorithms, but they are encouraged to 
seek access to the source code to make the most of 
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the framework. Source code access is provided to 
framework users using a community license 
agreement requiring them to contribute work back 
to the main code base. All source code users 
receive an account on a source code control server 
which gives them access to the source, along with 
incremental updates. Additionally, they are 
provided a workspace on the server where they can 
store their code, and share it first with the core 
TIME development team and subsequently with 
wider community as needed. The source code 
control system supports access controls which 
allow individual users to have read-write, read-
only and no-access to different parts of the code 
base. This control is used to minimise the amount 
of code an individual user needs to download and 
to prevent accidental corruption of critical 
framework components by inexperienced users. 
There is, however a ‘tightrope’ to walk to ensure a 
user has neither too much nor too little access. The 
source code control system is supported by a 
growing suite of automated unit tests, run twice 
daily, which monitor the integrity of core 
components. 

5. CASE STUDY: STOCHASTIC CLIMATE 
LIBRARY 

The Stochastic Climate Library (SCL) is a 
collection of single and multi site stochastic data 
generators, for generating rainfall and other 
climate variables to catchment models. Stochastic 
data is often used to examine the effects of climate 
variability on model predictions. These studies can 
then be used to perform risk based analysis of 
various systems, such as a water resources or 
agricultural system. 

SCL is a TIME based product available in the 
Catchment Modelling Toolkit. It has evolved from 
a tool providing point based (single site) climate 
sequences, to include the stochastic generation of 
spatial daily rainfall. The original models were 
available from a variety of sources, but were 
typically encapsulated in command-line driven 
applications. In order to make the tool available to 
a wider audience, and to incorporate important 
visual and statistic measures of output quality, it 
was decided to produce a graphical Windows 
application (figure 5). 

 
Figure 5: The Stochastic Climate Library 

The development of the SCL is the result of a 
collaboration between stochastic climate 
researchers and professional programmers. The 
development of the library included the 
implementation of the algorithms (shared between 
the researchers and the programmers), the 
development of a graphical user interface 
(undertaken by the programmers and utilising the 
TIME visualisation and data handling components) 
and the extension of TIME to include various 
mathematical tools, such as random number 
generators for non-uniform distributions. 

The original algorithms existed in various forms of 
procedural Fortran. As TIME models are 
implemented as classes in .NET languages, there 
was a mismatch between the current 
implementations and the desired forms. However, 
as there were a number of self contained models to 
be included, it was possible to use a variety of 
techniques to bring them into the TIME 
framework. 

Several models, including an annual rainfall 
generator, were migrated to a Fortran 95.NET 
compiler and recast as a collection of Fortran 
‘types’, which have the same internal 
representation as a class within other .NET 
languages. This approach was most efficient with 
models implemented in a modern dialect of 
Fortran (90 or 95) and structured in such a way 
that the core algorithm remained separate from IO 
and other peripheral code. 

A sub-daily stochastic rainfall generator was 
deemed inappropriate for translation to .NET for 
reasons of efficiency and for the complexity of the 
original code. In this case, the Fortran code was 
compiled as a Win32 DLL, rather than as .NET 
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byte code, and a .NET based wrapper DLL was 
created in Fortran 95.NET. 

The remaining models where translated from their 
original form into C# code. This involved 
significant recasting of the original structure into a 
class structure that took advantage of object-
oriented concepts such as inheritance and 
polymorphism. While this involved separating the 
code from the original model implementation, the 
object oriented structure included design 
efficiencies by making commonalities across 
models explicit. 

6. CONCLUSIONS 

The evolution and maturation of TIME represents 
a largely stakeholder driven development. Much of 
the functionality has been dictated by the needs of 
Catchment Modelling Toolkit products, and this 
partly explains the greater adoption by users 
focussed on the development of model 
applications. Nevertheless, the functionality that 
now exists in areas such as data analysis, 
optimisation, model integration and uncertainty 
representation is a significant drawcard to a 
growing user base. TIME is currently moving 
forwards in areas such as distributed model 
execution (Davis et al. 2005) and as the platform 
for the E2 catchment modelling framework 
(Perraud et al. 2005). 
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