
Evolution of TIME
1Rahman, J.M., J.M. Perraud, S.P. Seaton, H. Hotham, N. Murray, B. Leighton, A. Freebairn, G. Davis and

R. Bridgart

1CSIRO Land and Water, E-Mail: Joel.Rahman@csiro.au

Keywords: TIME, Model Development Frameworks, User Community, Spatial Modelling, Temporal
Modelling, Catchment Modelling.

EXTENDED ABSTRACT

The Invisible Modelling Environment (TIME) is a
.NET based model development framework,
supporting model developers in the creation and
testing of algorithms and in the development of
standalone modelling applications. TIME
underpins the modelling products in the
Catchment Modelling Toolkit
(http://www.toolkit.net.au); a community
developed collection of water quantity, water
quality and related models.

TIME is founded on a compact architecture with a
series of subsystem frameworks handling issues
such as data IO, data visualisation and non-linear
optimisation. Since the last congress, TIME has
undergone significant functional evolution,
although the major architectural elements remain
largely intact. Key additions are in the area of
spatial and temporal data analysis where a series
of GIS-like tools and novel algorithms have been
implemented. Additionally a series of generic,
non-linear optimisation tools have been
incorporated and used in several Toolkit products.
A visual tool for the integration of models has
been created based on ideas encompassed in
ICMS. Additionally, the underlying framework
has been extended to include the representation
and visualisation of data uncertainty.

Much of the evolution of the framework and the
libraries has been driven by an increasing
stakeholder base of model developers and end
users, which presents its own challenges for
'community' developed software systems. TIME
is now the development platform for
approximately 50 model developers from a range

of technical backgrounds from professional
software developers to PhD hydrologists. These
developers approach the framework from one of
several perspectives; as researchers implementing
and testing model algorithms using the model
testing tools; as software developers who create
standalone modelling tools and as framework
developers incrementally improving framework
functionality. These users make use of a range of
community resources, including shared source code
access, an email discussion forum and formal
training workshops.

TIME has proven to be an effective platform for the
development of standalone modelling tools with
high quality user interfaces. For example, the
Stochastic Climate Library draws on the
framework's inbuilt capabilities for visualisation,
data handling and temporal analysis to create a
polished modelling product producing stochastic
climate replicates. The Stochastic Climate Library
experience is a good case study of TIME's
evolution, by illustrating how a product can be co-
developed with researchers and professional
programmers, and how direct user requirements for
the end product can feed useful functionality back
into the underlying modelling framework. This
library includes a collection of models which
already existed in various forms, and a number of
approaches were used to bring them into TIME,
including porting to newer dialects of the original
language (Fortran), wrapping as DLLs, and porting
to C#, a language with additional capabilities.

This paper builds upon the theoretical foundations
of TIME to examine some of the practical issues in
the use, adoption and evolution of the framework.

697

1. INTRODUCTION

TIME (Rahman et al. 2003) is a model
development framework intended to support
developers when coding new model algorithms,
testing algorithms, and delivering models as
customised, standalone applications.

TIME underpins many of the modelling products
in the Catchment Modelling Toolkit
(http://www.toolkit.net.au), including E2 (Perraud
et al. 2005) and Rainfall Runoff library (RRL)
(Perraud et al. 2003).

The high level conceptual structure of the
framework has remained relatively stable over the
previous years, although there has been significant
expansion in terms of library capability, along with
the number of active model and application
developers. The concepts of model based
metadata, and the use of these metadata to create
‘model processing tools’ (Rahman et al. 2004)
remain central to the framework, and have been a
useful teaching tool when training new TIME
developers. The suite of metadata based tools has
extended to include a graphical model integration
tool, as well as tools for managing temporal and
spatial-temporal data during model runs. Other
improvements include a range of GIS-like spatial
analysis and terrain analysis tools along with a
capability for representing and visualising data
uncertainty.

The range of capabilities added to TIME reflects
the diversity of its user and developer base. While
it was originally expected that TIME would
support a relatively large number of ‘algorithm
developers’, and a relatively small number of
‘application developers’, it has transpired that
more than half of the TIME users undertake
application development tasks within the
framework. This has required some reassessment
of where emphasis and resources should be placed
when providing support to framework users.

2. FRAMEWORK FOUNDATIONS

TIME (Rahman et al. 2003) is a .NET based model
development framework intended to support three
key aspects of model development:

1) Coding new model algorithms in a high
level language such as C# or Visual
Basic,

2) Testing and applying new models using a
range of visualisation and analysis tools,
and

3) Delivering models as standalone
applications.

Model developers using the framework may make
use of all of these aspects at various times,
although it is common for individual users to focus
on just algorithm development and testing (aspects
1 + 2) or primarily application development
(aspect 3). While all three aspects rely on the same
libraries of software components, a user’s focus
will determine which subsystems they encounter
as end users (interacting with components at
runtime) or as developers (writing code that
consumes components).

2.1. Layered Architecture

The high level architecture of TIME is reproduced
in figure 1 as a layered approach. Each layer
contains software components which consume
components from the lower layers. In this respect,
a user focussed on algorithm development will
write components within the ‘Models’ layer. These
model components will consume components in
the data and kernel layers, while at runtime the
user will be able to interact with their model
component using components provided in the
Visualisation and User Interface layer. By contrast,
an application developer will create a standalone
software product, which consumes components
from all layers. TIME based applications include
TIME’s visualisation components which can be
customised and used in the same way as standard
Windows user interface components such as
buttons and text boxes.

Figure 1: Main architectural layers of TIME

The ability for developers to make use of the
framework at a variety of levels is a key advantage
of TIME, making it useful for a range of model
development tasks.

2.2. Component Metadata

TIME includes a system for marking-up
components with structured metadata attributes
(Rahman et al. 2004). These attributes are used to

698

categorise model variables (eg Input, Parameter,
State, Output) and describe constraints such as
units and numeric ranges. The metadata is
implemented using the .NET Custom Attribute
capability (ISO, 2003), and is retained within the
compiled components and is subsequently
available at runtime to tools within TIME. The
metadata capability has previously been used to
coordinate the execution of temporal models
(Rahman et al. 2003) and for the development of
generic, non-linear optimisation components
(Perraud et al. 2003). This capability continues to
be developed and exploited, and has more recently
been used to underpin a river network based
catchment framework within TIME (Perraud et al.
2005) and a graphical tool for model integration.

3. KEY DEVELOPMENTS

The high level concepts of TIME are relatively
stable, and much of the ongoing development
focuses on the functionality of the data analysis
libraries and user interface components.
Additionally, there is a focus on several model
support components, including a system for
representing and visualising data uncertainty and a
tool for visual model integration.

There has also been significant effort in the
development of a customised framework for
catchment modelling, using TIME as a base
(Perraud et al. 2005) as well as a framework for
the parallel execution of TIME models using grid
computing (Davis et al. 2005).

3.1. Data Analysis Libraries and Tools

TIME has a library of spatial and temporal data
analysis routines, including Boolean and
mathematical operations on data, time series
analysis, digital terrain analysis and GIS-like
spatial analysis routines.

While these routines are auxiliary to the
underlying architecture of the framework, they
represent a significant amount of reusable
functionality that makes development within
TIME more efficient.

A Boolean ‘Rule Engine’ allows users to construct
operations that derive new data sets based on
Boolean combinations and operations on existing
data sets. For example, a user might represent a
change in land use by deriving a new land use map
with the following rule:

WHERE elevation is between 600m and 800m

AND current land use is grazing or
broadacre agriculture

SET new land use to forest

ELSE set new land use to current land use

User’s construct rules, which are made up of a
predicate, a success action and an unsuccessful
action (else action). Predicates can be made up of a
nested combination of basic predicates, which
operate on a data set (eg elevation) and a test (eg
=, <, <>). Rules are evaluated at each ‘element’ of
a source data set to produce the corresponding
element of a resultant data set. As all data sets in
TIME can be evaluated using a single, one-
dimensional element indexing system, the rule
engine can be applied equally well to raster data
sets (as in the land use example), time series (for
example, to represent an ecologic response
function based on flow and water quality) or other
data types. Users construct predicates and rules
using a graphical user interface (figure 2). The
Rule Engine GUI is developed as a control which
can be deployed in a variety of applications.

Figure 2: Rule engine

TIME includes a range of digital terrain analysis
components, including D8 and D-infinity
(Tarboton 1997) flow routing, derivative terrain
properties such as slope mapping and wetness
indices, and watershed delineation. These
components are widely used within Catchment
Modelling Toolkit products, and reduce the need
for Toolkit users to pre-process model data in a
GIS. TIME also includes a wider range of GIS-like
components for spatial and zonal analysis,
including tools for merging and processing
polygon coverage and converting between raster
and polygonal representations. The inclusion of
sophisticated spatial operations raises a
philosophical question about the extent to which a
spatio-temporal modelling environment such as
TIME should seek to emulate a commercial GIS,
or even open source GIS efforts such as GRASS
(GRASS 2005). We have made a decision to not
develop a comprehensive GIS capability upfront,
but rather to develop routines and components as

699

are required for inclusion in Toolkit products, or
requested by TIME users. This approach is
complemented by the ability to interchange raster
and vector data with common GIS systems such as
Arc™ (ESRI 2005) and MapInfo™ (MapInfo
2005).

3.2. Data Uncertainty

The quantification, representation and reporting of
uncertainty is a recurrent concern in modelling,
irrespective of the discipline (Jolma and Norton
2005). The increasing need to make management
decisions based on a quantified risk will only make
this concern more pressing. Quantifying the
uncertainty of model outputs is non-trivial
theoretically, and difficult practically.

TIME currently supports the representation and
visualisation of uncertainty for its data. The
uncertainty is described at the level of the abstract
class Data, parent of any data in TIME, e.g. time
series or raster. Data uncertainty is defined as the
representation of the uncertainty for each of its
items, i.e. by assigning a probability density
function (PDF) for each data item. Data
uncertainty may thus range from being simply
described as a Gaussian PDF centred on each item
value and with a standard deviation that is a
fraction of this item value, or a complex PDF
derived from running a Monte-Carlo simulation
and summarising the characteristics of the
realisations for each data item.

Visualisation of data uncertainty is currently
supported for time series data principally. Even in
situations where fully-fledged uncertainty
estimation cannot be performed it is an important
communication tool to convey it to decision
makers. The uncertainty can be displayed by
showing a confidence interval around the predicted
time series, or using a “fuzzy box” around the
prediction based on the PDF for each data item
(figure 3). The Stochastic Climate Library (SCL),
case study later in this paper, uses the data
uncertainty estimations of TIME to determine a
confidence interval on the cumulative probability
functions of stochastically generated rainfall.

Figure 3: Time series uncertainty visualisation

3.3. Model Integration Tool

The canvas tool is a component of TIME that gives
an application the ability to visually link models
together and run the result. The tool provides a
rapid and simple way to develop new modelling
functionality and is accessible to users who are not
programmers. Model testing is enhanced through
the use of data outputs from other models as inputs
to the test model. Automated processing of
sequential data analysis can be achieved, and the
visual construction can provide a user a clear
picture of how a model really works, compared to
traditional programming methods.

The canvas makes use of TIME model attributes to
ensure the validity of composite models. For
example, the Input and Output attributes are used
to guarantee inputs never connect to outputs. The
use of attributes is not mandatory for the canvas;
they simply provide guidance for the user.

The Model Integration Tool is a proposed project
that will use the canvas at its heart, and provide a
much richer feature set than that currently
available from just the canvas. Features planned
include, the ability to save composite models
which can then be used in further composite
models, professional user interfaces, and
potentially, connections to data stores for easy
access to data.

Figure 4 is a screenshot of a prototype that uses the
canvas. The process shown consists of a catchment
delineation process, sending its resulting sub-
catchment map to a raster extraction routine. This
extracted sub-catchment is then sent to a model
that converts the raster into a polygon.

700

Figure 4: System Model Tool

4. USER BASE

Use of TIME is expanding, predominately
amongst Australian natural resource management
organisations. There are currently approximately
50 active users of TIME. This includes the
developers of fifteen TIME-based Catchment
Modelling Toolkit products.

TIME developers come from a range of technical
backgrounds, and focus on quite different
components within the framework. TIME
developers stay in touch through a combination of
training workshops, face to face meetings and an
email discussion group.

4.1. User Profile

The TIME users range from senior research
scientists and PhD students, to professional
software developers. While these users are
predominately from Australian organisations, they
are drawn from a range of academic institutions,
government agencies and private industry. The
modelling needs of these users vary across a range
of spatial and temporal modelling domains.

It is possible to subjectively categorise TIME users
as having a primary focus on algorithm
development, a primary focus on application
development, or a focus on both algorithm and
application development. Referring to the three
aspects of model development supported by TIME
(Section 2), algorithm developers focus on coding
algorithms using the TIME data libraries, and
testing algorithms using the model testing tools.
Application developers, also use the data libraries
and testing tools, but create standalone products by
developing custom user interfaces that consume
TIME’s user interface and visualisation

components. It was originally expected that only a
small number of TIME users would undertake
application development, with most users only
creating and testing underlying algorithms. It has
transpired that the majority of current TIME users
do create custom user interfaces and standalone
applications. This has resulted in more
development emphasis being placed on reusable
user interface components as a key value
proposition to new users. This also required a
reassessment of the training material to include
information on making programmatic use of the
TIME visualisation system.

The wide focus on application development also
reflects an early immaturity in the model testing
tools, which required developers of most complex
models to create a user interface for the model.
There has been a recent resurgence of TIME users
who predominately build algorithms, reflecting a
growing maturity in the model test tools including
the automatic user interface generator, thereby
allowing algorithm developers to build and test
more sophisticated models without reverting to
custom user interface development.

4.2. Community Resources

As TIME users move from being beginner
framework users through to expert developers,
they make use of a range of support services which
broadly constitute the TIME community. These
services include training material (available at
http://www.tookit.net.au/) and practical
workshops, an email discussion list, face to face
meetings and source code access to the underlying
framework.

Most new TIME developers are introduced to the
framework with a workshop lasting between two
to four days. The shorter workshops focus on
algorithm development with TIME, and testing
new algorithms with generic tools such as the user
interface generator and non-linear optimisers.
These workshops accommodate developers from a
wide range of technical backgrounds, from
professional programmers, to modellers with very
minimal programming background. The longer
workshops add material on developing standalone
applications with the TIME user interface and
visualisation components, along with material on
customising existing Catchment Modelling Toolkit
products such as the Rainfall Runoff Library
(Perraud et al. 2003) and E2 (Perraud et al. 2005).

Workshop participants receive a pre-compiled
version of TIME which is sufficient for developing
and testing algorithms, but they are encouraged to
seek access to the source code to make the most of

701

the framework. Source code access is provided to
framework users using a community license
agreement requiring them to contribute work back
to the main code base. All source code users
receive an account on a source code control server
which gives them access to the source, along with
incremental updates. Additionally, they are
provided a workspace on the server where they can
store their code, and share it first with the core
TIME development team and subsequently with
wider community as needed. The source code
control system supports access controls which
allow individual users to have read-write, read-
only and no-access to different parts of the code
base. This control is used to minimise the amount
of code an individual user needs to download and
to prevent accidental corruption of critical
framework components by inexperienced users.
There is, however a ‘tightrope’ to walk to ensure a
user has neither too much nor too little access. The
source code control system is supported by a
growing suite of automated unit tests, run twice
daily, which monitor the integrity of core
components.

5. CASE STUDY: STOCHASTIC CLIMATE
LIBRARY

The Stochastic Climate Library (SCL) is a
collection of single and multi site stochastic data
generators, for generating rainfall and other
climate variables to catchment models. Stochastic
data is often used to examine the effects of climate
variability on model predictions. These studies can
then be used to perform risk based analysis of
various systems, such as a water resources or
agricultural system.

SCL is a TIME based product available in the
Catchment Modelling Toolkit. It has evolved from
a tool providing point based (single site) climate
sequences, to include the stochastic generation of
spatial daily rainfall. The original models were
available from a variety of sources, but were
typically encapsulated in command-line driven
applications. In order to make the tool available to
a wider audience, and to incorporate important
visual and statistic measures of output quality, it
was decided to produce a graphical Windows
application (figure 5).

Figure 5: The Stochastic Climate Library

The development of the SCL is the result of a
collaboration between stochastic climate
researchers and professional programmers. The
development of the library included the
implementation of the algorithms (shared between
the researchers and the programmers), the
development of a graphical user interface
(undertaken by the programmers and utilising the
TIME visualisation and data handling components)
and the extension of TIME to include various
mathematical tools, such as random number
generators for non-uniform distributions.

The original algorithms existed in various forms of
procedural Fortran. As TIME models are
implemented as classes in .NET languages, there
was a mismatch between the current
implementations and the desired forms. However,
as there were a number of self contained models to
be included, it was possible to use a variety of
techniques to bring them into the TIME
framework.

Several models, including an annual rainfall
generator, were migrated to a Fortran 95.NET
compiler and recast as a collection of Fortran
‘types’, which have the same internal
representation as a class within other .NET
languages. This approach was most efficient with
models implemented in a modern dialect of
Fortran (90 or 95) and structured in such a way
that the core algorithm remained separate from IO
and other peripheral code.

A sub-daily stochastic rainfall generator was
deemed inappropriate for translation to .NET for
reasons of efficiency and for the complexity of the
original code. In this case, the Fortran code was
compiled as a Win32 DLL, rather than as .NET

702

byte code, and a .NET based wrapper DLL was
created in Fortran 95.NET.

The remaining models where translated from their
original form into C# code. This involved
significant recasting of the original structure into a
class structure that took advantage of object-
oriented concepts such as inheritance and
polymorphism. While this involved separating the
code from the original model implementation, the
object oriented structure included design
efficiencies by making commonalities across
models explicit.

6. CONCLUSIONS

The evolution and maturation of TIME represents
a largely stakeholder driven development. Much of
the functionality has been dictated by the needs of
Catchment Modelling Toolkit products, and this
partly explains the greater adoption by users
focussed on the development of model
applications. Nevertheless, the functionality that
now exists in areas such as data analysis,
optimisation, model integration and uncertainty
representation is a significant drawcard to a
growing user base. TIME is currently moving
forwards in areas such as distributed model
execution (Davis et al. 2005) and as the platform
for the E2 catchment modelling framework
(Perraud et al. 2005).

7. ACKNOWLEDGMENTS
TIME is developed as a joint project between the
Cooperative Research Centre for Catchment
Hydrology (CRCCH) and the Commonwealth
Scientific and Industrial Research Organisation
(CSIRO).

8. REFERENCES

Reed, M., Cuddy, S. M.; Rizzoli, A. E. (1999), A
framework for modelling multiple resource
management issues—an open modelling
approach, Environmental Modelling and
Software with Environment Data News, 14,
November, 1999, pp. 503-509

Davis, G.P. Bridgart, R.J. Stephenson, T.R. and
Rahman, J. (2005), Adding Grid Computing
Capabilities to an Existing Modeling
Framework, Proceedings of MODSIM 2005.

International Organization for Standardization
(2003), ISO/IEC 23271:2003(E) Information
technology - Common Language
Infrastructure, 10.6 Custom Attributes,
http://www.iso.org, Last Accessed August
2005.

Jolma, A., Norton, J. P., (2005), Methods of
uncertainty treatment in environmental
models, Environmental Modelling &
Software, 20, 979–980

Perraud, J.-M., Podger G. M., Rahman J. M.,
Vertessy R. A. (2003), A new rainfall-runoff
software library, Proceedings of MODSIM
2003, (4), 1733-1738

Perraud, J.-M., Seaton, S. P., et al. (2005), The
architecture of the E2 modelling framework,
Proceedings of MODSIM 2005

Rahman J. M., Seaton, S. P., et al. (2003), It’s
TIME for a new environmental modelling
framework, Proceedings of MODSIM 2003,
(4), 1727-1732

Rahman, J.M., Seaton, S. P., and Cuddy, S. M.
(2004), Making frameworks more useable:
using model introspection and metadata to
develop model processing tool, Environmental
Modelling and Software, 19, March, 2004, pp.
275-284.

Environmental Systems Research Institute, Inc.
(ESRI),
http://www.esri.com/software/arcgis/index.ht
ml, Last Accessed August 2005

Geographic Resources Analysis Support System
(GRASS). http://grass.itc.it/ Last Accessed
August 2005.

MapInfo Corporation (2005), www.mapinfo.com,
Last Accessed August 2005

Srikanthan, R., Chiew, FHS and Frost, A. J.
(2005). Stochastic Climate Library User
Guide, CRCCH Toolkit,
www.toolkit.net.au/scl, Last Accessed August
2005

Tarboton, D. G. (1997) A new method for the
determination of flow directions and upslope
areas in grid digital elevation models, Water
Resour. Res., 33(2), 309-320, 1997.

703

