
Modeling, Analysis and Optimization of Decision
Process Systems

Zvi Retchkiman Konigsberg
Instituto Politécnico Nacional, Mineria 17-2, Mexico D.F 11800, Mexico. mzvi@cic.ipn.mx
Keywords: Decision process Petri nets; Stability; Lyapunov methods; Optimization.

EXTENDED ABSTRACT: This paper in-
troduces a new modeling paradigm for develop-
ing decision process representation called Deci-
sion Process Petri Nets (DPPN). It extends the
place-transitions Petri net theoretic approach by
including the Markov decision process. Place-
transitions Petri nets (PN) are used for process
representation taking advantage of the formal se-
mantic and the graphical display. Markov deci-
sion processes are utilized as a tool for trajec-
tory planning via a utility function. The main
point of the DPPN is its ability to represent the
mark-dynamic and trajectory-dynamic properties
of a decision process. Within the mark-dynamic
framework the theoretic notions of equilibrium
and stability are those of the place-transitions
Petri net. In the trajectory-dynamic framework,
the utility function used for trajectory planning
is optimized, via a Lyapunov like function, ob-
taining as a result new characterizations for �-
nal decision points (optimum point) and stabil-
ity. Moreover, it is shown that the DPPN mark-
dynamic and Lyapunov trajectory-dynamic prop-
erties of equilibrium, stability and �nal decision
points (optimum point) converge under certain re-
strictions. An algorithm for optimum trajectory
planning that makes use of the graphical repre-
sentation of the place-transitions Petri net and
the utility function is proposed. The work pre-
sented here makes �rm steps toward the modelling
and analysis of decision problems in several �elds
as: management, ecological systems, defense and
homeland security issues and terrorism.
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1 Introduction

A decision process consists on a series of strate-
gies which guide the selection of actions that lead
a decision maker to a �nal decision state. For
an initial state there could be a number of pos-
sible �nal decisions states that may be reached.
In real decision processes the strategies often re-
quire probabilistic choices. Taking into account
di¤erent possible courses of action it is impor-
tant that the overall utility will take into con-
sideration each strategy. This means that the
utility measure will be used to determine the op-
timum strategy preference for some given situa-
tions. In the last few years, Petri nets and its rela-
tionship with decision process techniques have re-
ceived much attention from researchers in the per-
formance and reliability arena ([1], [2], [3], [4] and
[5]). However, these approaches present some lim-
itations with respect to their ability for character-
izing the stability properties related to the Petri
net and the Markovian decision process. This pa-
per introduces a modeling paradigm for develop-
ing decision process representation called Decision
Process Petri Nets (DPPN). It extends the place-
transitions Petri net theoretic approach including
the Markov decision process, using a utility func-
tion as a tool for trajectory planning. On the
one hand, place-transitions Petri nets are used
for process representation taking advantage of the
well-know properties of this approach namely, for-
mal semantic and graphical display, giving a spe-
ci�c and unambiguous description of the behavior
of the process. On the other hand, Markov deci-
sion processes have become a standard model for
decision theoretic planning problems, having as
key drawbacks the exponential nature of the dy-
namic policy construction algorithms. Although,
both perspectives are integrated in a DPPN they
work at di¤erent execution levels. That is, the
operation of the place-transitions Petri net is not
modi�ed and the utility function is used exclu-
sively for establishing trajectory tracking in the
place-transitions Petri nets. The main point of
the DPPN is its ability to represent the mark-
dynamic and the trajectory-dynamic properties
of a decision process application. The mark-
dynamic properties of the DPPN as those prop-
erties related only to the place-transitions Petri
nets, while the trajectory-dynamic properties of
the DPPN are those properties related to the util-
ity function at each place that depends on a prob-
abilistic routing policy of the place-transitions
Petri nets. Within the mark-dynamic framework
the theoretic notions of stability are those of the
place-transitions Petri nets. In this sense an equi-
librium point is a place in the DPPN such that
its marking is bounded, does not change, and it
is the last place in the net. In the trajectory-
dynamic framework the utility function is set to

be a Lyapunov like function. The core idea of
the approach uses a non-negative utility function
that converges in decreasing form to a (set of)
�nal decision state(s). It is important to point
out that the value of the utility function asso-
ciated with the DPPN implicitly determines a
set of policies, not just a single policy (in case
of having several decision states that could be
reached). The optimum point results to be the
best choice selected from a number of possible �-
nal decisions states that may be reached. As a
result, the mark-dynamic framework is extended
by including the trajectory-dynamic properties.
It is shown, that the DPPN mark-dynamic and
trajectory-dynamic properties of equilibrium, sta-
bility and optimum point conditions converge un-
der certain restrictions i.e., if the DPPN is �-
nite and non-blocking (unless p is an equilibrium
point) then we have that a �nal decision state is an
equilibrium point. An algorithm for optimum tra-
jectory planning used to �nd the optimum point
is presented. It consists on �nding a �ring transi-
tion sequence such that an optimum decision state
will be reached in the DPPN. For this purpose,
the algorithm uses the graphical representation
provided by the place-transitions Petri nets and
the utility function. The paper is structured in
the following manner. The next section presents
the necessary mathematical background and ter-
minology needed to understand the rest of the pa-
per. Section 3, discusses the main results of this
paper, providing a de�nition of the DPPN and
giving a detailed analysis of the equilibrium, sta-
bility and optimum point conditions for the mark-
dynamic and the trajectory-dynamic parts of the
DPPN. An algorithm for calculating the optimum
trajectory used to �nd the optimum point is pro-
posed and an example, where the concepts previ-
ously presented are applied, is addressed. Finally,
some concluding remarks are provided.

2 Preliminaries [6]

This section presents some well-established de�n-
itions and properties which will be used later.
NOTATION: N = f0; 1; 2; :::g, R+ = [0;1),
N+
n0 = fn0; n0 + 1; :::; n0 + k; :::g ; n0 � 0. Given

x; y 2 Rd, we usually denote the relation ���to
mean componentwise inequalities with the same
relation, i.e., x � y is equivalent to xi � yi;8i.
A function f(n; x), f : N+

n0 � R
d ! Rd is called

nondecreasing in x if given x; y 2 Rd such that
x � y and n 2 N+

n0 then, f(n; x) � f(n; y).
Consider systems of �rst order ordinary di¤erence
equations given by

x(n+ 1) = f [n; x(n)], x(no) = x0, n 2 N+
n0 (1)

where n 2 N+
n0 , x(n) 2 R

d and f : N+
n0�R

d ! Rd
is continuous in x(n).
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De�nition 1 The n vector valued function
�(n; n0; x0) is said to be a solution of (1)
if �(n0; n0; x0) = x0 and �(n + 1; n0; x0) =
f(n;�(n; n0; x0)) for all n 2 N+

n0 .

De�nition 2 The system (1) is said to be
i). Practically stable, if given (�;A) with 0 < � <
A, then

jx0j < �) jx(n; n0; x0)j < A, 8n 2 N+
n0 , n0 � 0;

ii). Uniformly practically stable, if it is practically
stable for every n0 � 0.

De�nition 3 A continuous function
� : [0;1) ! [0;1) is said to belong to
class K if �(0) = 0 and it is strictly increasing.

2.1 Methods for Practical stability

Consider the vector function v(n; x(n)), v : N+
n0�

Rd ! Rp+ and de�ne the variation of v relative to
(1) by

�v = v(n+ 1; x(n+ 1))� v(n; x(n)) (2)

Then, the following result concerns the practical
stability of (1).

Theorem 4 Let v : N+
n0 � Rd ! Rp+ be a

continuous function in x, de�ne the function
v0(n; x(n)) =

Pp
i=1 vi(n; x(n)) such that satis�es

the estimates.

b(jxj) � v0 (n; x (n)) � a(jxj) for a; b 2 K and

�v(n; x(n)) � w(n; v(n; x(n)))

for n 2 N+
n0 , x(n) 2 R

d , where w : N+
n0 � R

p
+ !

Rp is a continuous function in the second argu-
ment.
Assume that : g(n; e) , e+w(n; e) is nondecreas-
ing in e, 0 < � < A are given and �nally that
a(�) < b(A) is satis�ed. Then, the practical sta-
bility properties of

e(n+ 1) = g(n; e(n)), e(n0) = e0 � 0. (3)

imply the corresponding practical stability prop-
erties of system (1).

Corollary 5 In theorem 4, if w(n; e) � 0 we get
uniform practical stability of (1) which implies
structural stability.

2.2 Petri Nets

A place-transition Petri net is a 5-tuple, PN =
fP;Q; F;W;M0g where: P = fp1; p2; :::; pmg is a
�nite set of places, Q = fq1; q2; :::; qng is a �nite
set of transitions, F � (P �Q)[ (Q� P ) is a set
of arcs, W : F ! N+

1 is a weight function, M0:
P ! N is the initial marking, P \ Q = ? and
P [ Q 6= ?. A Petri net structure without any
speci�c initial marking is denoted by PN .
Let Mk(pi) denote the marking (i.e., the number
of tokens) at place pi 2 P at time k and let Mk =
[Mk(p1); :::;Mk(pm)]

T denote the marking (state)
of PN at time k. A transition qj 2 Q is said to
be enabled at time k if Mk(pi) �W (pi; qj) for all
pi 2 P such that (pi;qj) 2 F . It is assumed that
at each time k there exists at least one transition
to �re. If a transition is enabled then, it can �re.
If an enabled transition qj 2 Q �res at time k
then, the next marking for pi 2 P is given by

Mk+1(pi) =Mk(pi) +W (qj ; pi)�W (pi; qj):

Let A = [aij ] denote an n � m matrix of inte-
gers (the incidence matrix) where aij = a+ij � a�ij
with a+ij = W (qi; pj) and a

�
ij = W (pj ; qi) . Let

uk 2 f0; 1gn denote a �ring vector where if
qj 2 Q is �red then, its corresponding �ring vec-
tor is uk = [0; :::; 0; 1; 0; :::; 0]T with the one in the
jth position in the vector and zeros everywhere
else. The matrix equation (nonlinear di¤erence
equation) describing the dynamical behavior rep-
resented by a Petri net is:

Mk+1 =Mk +A
Tuk (4)

where if at step k, a�ij < Mk(pj) for all pj 2 P
then, qi 2 Q is enabled and if this qi 2 Q �res
then, its corresponding �ring vector uk is utilized
in the di¤erence equation (4) to generate the next
step. Notice that if M

0
can be reached from some

other marking M and, if we �re some sequence
of d transitions with corresponding �ring vectors
u0; u1; :::; ud�1; we obtain that

M
0
=M +ATu; u =

d�1X
k=0

uk: (5)

De�nition 6 The set of all the markings (states)
reachable from some starting marking M is called
the reachability set, and is denoted by R(M).

Let (Nm; d) be a metric space where d : Nm �
Nm ! R+ is de�ned by

d(M1;M2) =
mX
i=1

�i jM1(pi)�M2(pi) j; �i > 0;

i = 1; :::;m:
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and consider the matrix di¤erence equation which
describes the dynamical behavior of the discrete
event system modeled by a Petri net (5) then we
have.

Proposition 7 Let PN be a place-transitions
Petri net. PN is uniform practical stable if there
exists a � strictly positive m vector such that

�v = uTA� � 0, A� � 0 (6)

3 Decision Process Petri
Nets

This section introduces the concept of Decision
Process Petri nets (DPPN) by locally randomizing
the possible choices, for each individual place of
the Petri net.

De�nition 8 A Decision Process Petri net is
a 8-tuple DPPN = fP;Q; F;W;M0; �; Ug
where P;Q; F;W;M0 are as in PN , � :
I ! R+ is a routing policy representing the
probability of choosing a particular transition
(routing arc), such that for each p 2 P ,P
(p;qj):qj varying over Q

�((p; qj)) = 1, and U : P !

R+ is a utility function.

The previous behavior of the DPPN is described
as follows. A transition q must �re as soon as
all its input places contain enough tokens. Once
the transition �res, it consumes the corresponding
tokens and immediately produces certain amount
of tokens in each subsequent place p 2 P . When
�(�) = 0 means that there are no output arcs.
Figures 1 and 2 represent partial routing policies
� that generate a transition from state p1 to state
p2 where p1; p2 2 P :

� Case 1. In �gure 1 the probability that q1
generates a transition from state p1 to p2 is
1/3, but since q1 has two output arcs, the
probability from place p1 to p2 increases to
2/3.

� Case 2. In �gure 2 we set by convention
that the probability from place p1 to p2 is
1/3 (1/6 plus 1/6). However, because q1 has
one output arc, the probability from p1 to p2
decreases to 1/6.

1/3

p1 p2
q1

Figure 1. Routing policy case 1

1/6

1/6

p1 p2
q1

Figure 2. Routing policy case 2

Uk(:) denotes the utility at place pi 2 P at time
k and Uk = [Uk(:); :::; Uk(:)]

T denotes the utility
state of the DPPN at time k. FN : F ! R+
is the number of arcs from place p to transition q
(the number of arcs from transition q to place p).
The rest of the DPPN functionality is the same
as the one of the PN .
Consider an arbitrary pi 2 P and for each �xed
transition qj 2 Q that forms an output arc
(qj ; pi) 2 O, look at all the previous places ph
of the place pi denoted by the list (set) p�ij =
fph : (ph; qj) 2 I & (qj ; pi) 2 Og (�ij is de�ned as
the index sequence of identi�ers h of the previous
places ph 2 p�ij ), that materialize all the input
arcs (ph; qj) 2 I; and form the sumX

h2�ij

	(ph; qj ; pi) � Uk(ph) (7)

where 	(ph; qj ; pi) = �(ph; qj)� FN(qj ;pi)FN(ph;qj)
and the

index sequence j is the set fj : qj 2 (ph; qj) \
(qj ; pi): ph running over the set p�ijg.
Proceeding with all the qjs we form the vec-
tor indexed by the sequence j identi�ed by
(j0; j1; :::; jf ) as follows:
26664 X
h2�ij0

	(ph; qj0
; pi) � Uk(ph); :::;

X
h2�ijf

	(ph; qjf
; pi) � Uk(ph)

37775
( 8 )

Intuitively, the vector given by equation (8) rep-
resents all the possible trajectories through the
transitions qjs; (j0; j1; :::; jf ) to a place pi; with i
�xed.
Continuing with the construction of the utility
function U , the following de�nition is given.

De�nition 9 Let L : Rn ! R+ be a continu-
ous map. Then, L is a Lyapunov like function i¤
satis�es the following: 9x� such that L(x�) = 0;
L(x) > 0 for 8x 6= x�; L(x) ! 1 when x ! 1;
�L = L(xi+1)� L(xi) < 0 for all xi; xi+1 6= x�.

Then, formally the utility function U is de�ned as
follows:

De�nition 10 The utility function U with re-
spect a Decision Process Petri net DPPN =
fP;Q; F;W;M0; �; Ug is represented by the equa-
tion

U
qj
k (pi) =

�
Uk(p0) if i = 0; k = 0

L(�) if i > 0; k = 0 & i � 0; k > 0
(9)

where � is equal to
26664 X
h2�ij0

	(ph; qj0
; pi) � U

qj0
k

(ph); :::;
X

h2�ijf

	(ph; qjf
; pi) � U

qjf
k

(ph)

37775
( 1 0 )
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the function L : D � Rn+ ! R+ is a Lyapunov
like function which optimizes the utility through
all possible transitions (i.e. trough all the pos-
sible trajectories de�ned by the di¤erent qjs), D
is the decision set formed by the j�s ; 0 � j �
f of all those possible transitions (qj pi) 2 O,
	(ph; qj ; pi) = �(ph; qj) � FN(qj ;pi)

FN(ph;qj)
, �ij is the in-

dex sequence of the list of previous places to pi
through transition qj, ph (h 2 �ij) is a speci�c
previous place of pi through transition qj.

Remark 11 The iteration over k for U is as fol-
lows:

1. For i = 0 and k = 0 the utility is U0(p0) at
place p0 and for the rest of the places pi the
utility is 0,

2. For i � 0 and k > 0 the utility is Uqjk (pi) at
each place pi is computed by taking into ac-
count the utility value of the previous places
ph for k and k � 1 (when needed).

Property 12 The continuous function U(:) sat-
is�es:

1. If there exists an in�nite sequence fpig1i=1 2
P with pn !

n!1
p4 such that 0 � ::: <

U(pn) < U(pn�1)::: < U(p1), then U(p4) is
the in�mum, i.e. U(p4) = 0 .

2. If there exists a �nite sequence p1; :::; pn 2
P with p1; :::; pn ! p4 such that C =
U(pn) < U(pn�1)::: < U(p1), then U(p4) is
the minimum, i.e. U(p4) = C where C 2 R,
(p4 = pn).

Therefore 1 and 2 imply that : U(p) > 0 or
U(p) > C where C 2 R, 8p 2 P such that
p 6= p4:

3 8pi; pi�1 2 P such that pi�1 �U pi then
�U = U(pi)� U(pi�1) < 0.

3.1 DPPN Mark-Dynamic Proper-
ties

De�nition 13 An equilibrium point with respect
to a Decision Process Petri net DPPN =
fP;Q; F;W;M0; �; Ug is a place p� 2 P such that
Ml(p

�) = S < 1, 8l � k and p� is the last place
of the net.

Theorem 14 The Decision Process Petri net
DPPN = fP;Q; F;W;M0; �; Ug is uniformly
practically stable i¤ if there exists a � strictly pos-
itive m vector such that �v = uTA� � 0.

Proof. ()) It follows directly from proposition
7. ((=) Let us suppose by contradiction that
uTA� > 0 with � �xed. From M 0 = M + uTA

we have that M 0� =M�+ uTA� > M�. Then,
it is possible to construct an increasing sequence
M� < M 0� < ::: < Mn� < :::. which grows
up without bound. Therefore, the DPPN is not
uniformly practically stable.

Remark 15 It is important to underline that
the only places where the DPPN will be allowed to
get blocked are those which correspond to equilib-
rium points.

3.2 DPPN Trajectory-Dynamic
Properties.

De�nition 16 A �nal decision point pf 2 P with
respect to a Decision Process Petri net DPPN =
fP;Q; F;W;M0; �; Ug is a place p 2 P where the
in�mum or the minimum is attained, i.e. U(p) =
0 or U(p) = C.

De�nition 17 An optimum point p4 2 P with
respect to a Decision Process Petri net DPPN =
fP;Q; F;W;M0; �; Ug is a �nal decision point
pf 2 P where the best choice is selected �according
to some criteria�.

Remark 18 In case that 9p1; :::; pn 2 P , such
that U(p1) = ::: = U(pn) = 0, then p1; :::; pn are
optimum points.

Proposition 19 Let DPPN =
fP;Q; F;W;M0; �; Ug be a Decision Process
Petri net and let p4 2 P be an optimum point.
Then U(p4) � U(p), 8p 2 P such that p �U p4.

Proof. We have that U(p4) is equal to the min-
imum or the in�mum. Therefore, U(p4) � U(p)
8p 2 P such that p �U p4.

Theorem 20 The Decision Process Petri net
DPPN = fP;Q; F;W;M0; �; Ug is uniformly
practically stable i¤ U(pi+1)� U(pi) � 0.

Proof. (=))Let us choose v = Id(U(pi)) then
�v = U(pi+1) � U(pi) � 0, then by the au-
tonomous version of theorem 4 and corollary 5,
the DPPN is stable. ((=) We want to show that
the DPPN is practically stable, i.e., given 0 < � <
A we must show that jU(pi)j < A. We know that
U(p0) < � and since U is non-increasing we have
that jU(pi)j < jU(p0)j < � < A.

De�nition 21 A strategy with respect a
Decision Process Petri net DPPN =
fP;Q; F;W;M0; �; Ug is identi�ed by � and
consists of the routing policy transition sequence
represented in the DPPN graph model such that
some point p 2 P is reached.

De�nition 22 An optimum strategy with re-
spect a Decision Process Petri net DPPN =
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fP;Q; F;W;M0; �; Ug is identi�ed by �4 and con-
sists of the routing policy transition sequence rep-
resented in the DPPN graph model such that an
optimum point p4 2 P is reached.

Equivalently we can represent (9,10) as follows:

U
�hj
k (pi) =

�
Uk(p0) if i = 0; k = 0

L(�) if i > 0; k = 0 & i � 0; k > 0
(11)

� =

26664 X
h2�ij0

�hj0
(pi) � U

�hj0
k

(ph); ; :::;
X

h2�ijf

�hjf
(pi) � U

�hjf
k

(ph)

37775
( 1 2 )

where �hj(pi) = 	(ph; qj ; pi). The rest is as be-
fore.

Remark 23 The utility function U will be repre-
sented as follows:

1. Uk(pi)
4
= U

qj
k (pi)

4
= U

�hj
k (pi) for any transi-

tion and any strategy.

2. U4k (pi)
4
= U

q4j
k (pi)

4
= U

�4hj
k (pi) for an opti-

mum transition and optimum strategy.

3.3 Convergence of the DPPN
Mark-Dynamic and Trajectory-
Dynamic Properties

Theorem 24 Let DPPN =
fP;Q; F;W;M0; �; Ug be a Decision Process
Petri net. If p� 2 P is an equilibrium point then
it is a �nal decision point.
Proof. Let us suppose that p� is an equilibrium
point we want to show that its utility has reached
an in�mum or a minimum. Since p� is an equi-
librium point, by de�nition, it is the last place of
the net and its marking can not be modi�ed. But,
this implies that the routing policy attached to the
transition(s) that follows p� is 0, (in case there is
such a transition(s) i.e., worst case). Therefore,
its utility can not be modi�ed and since the util-
ity is a decreasing function of pi an in�mum or a
minimum is attained. Then, p� is a �nal decision
point.

Theorem 25 Let DPPN =
fP;Q; F;W;M0; �; Ug be a �nite and non-
blocking Decision Process Petri net (unless p
is an equilibrium point). If pf 2 P is a �nal
decision point then it is an equilibrium point.
Proof. If pf is a �nal decision point, since
the DPPN is �nite, there exists a k such that
Uk(pf ) = C. Let us suppose that pf is not an
equilibrium point.
Case 1. Then, it is not bounded. So, it is possible
to increment the marks of pf in the net. There-
fore, it is possible to modify its utility. As a result,
it is possible to obtain a lower utility than C.

Case 2. Then, it is not the last place in the net.
So, it is possible to �re some output transition
to pf in such a way that its marking is modi�ed.
Therefore, it is possible to modify the utility over
pf . As a result, it is possible to obtain a lower
utility than C.

Corollary 26 Let DPPN =
fP;Q; F;W;M0; �; Ug be a �nite and non-
blocking Decision Process Petri net (unless p is
an equilibrium point). Then, an optimum point
p4 2 P is an equilibrium point.

Proof. From the previous theorem we know that
a �nal decision point is an equilibrium point and
since in particular p4 is �nal decision point then,
it is an equilibrium point.

Remark 27 The �nite and non-blocking (unless
p is an equilibrium point) condition over the
DPPN can not be relaxed:

1. Let us suppose that the DPPN is not �nite
i.e., p is in a cycle then, the Lyapunov like
function converges when k ! 1 to zero, but
the DPPN has no �nal place therefore, it is
not an equilibrium point.

2. Let us suppose that the DPPN blocks at some
place (not an equilibrium point) pb 2 P .
Then, the Lyapunov like function has a min-
imum at place pb; lets say L(pb) = C but pb
is not an equilibrium point, because it is not
necessarily the last place of the net.

De�nition 28 Let DPPN =
fP;Q; F;W;M0; �; Ug be a Decision Process
Petri. A trajectory ! is a (�nite or
in�nite) ordered subsequence of places
p&(1) �Uk p&(2) �Uk ::: �Uk p&(n) �Uk :::
such that a given strategy � holds.

De�nition 29 Let DPPN =
fP;Q; F;W;M0; �; Ug be a Decision Process
Petri. An optimum trajectory ! is an (�-
nite or in�nite) ordered subsequence of places
p&(1) �U4

k
p&(2) �U4

k
::: �U4

k
p&(n) �U4

k
::: such

that an optimum strategy �4 holds.

Theorem 30 Let DPPN =
fP;Q; F;W;M0; �; Ug be a non blocking Decision
Process Petri net (unless p is an equilibrium
point) then we have that:

U4k (p
4) � Uk(p), 8�; �4

Proof. We have that U�hjk (pi) is given by (11; 12)
then, starting from p0 and proceeding with the
iteration eventually the trajectory ! given by
p0 = p&(1) �Uk p&(2) �Uk ::: �Uk p&(n) �Uk :::

which converges to p4; i.e., the optimum trajec-
tory, is obtained. Since, at the optimum trajec-
tory the optimum strategy �4 holds, we have that
U4k (p

4) � Uk(p), 8�; �4.
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Remark 31 The inequality U4k (p
4) � Uk(p)

means that the utility is optimum when the op-
timum strategy is applied.

Corollary 32 Let DPPN =
fP;Q; F;W;M0; �; Ug be a non blocking Decision
Process Petri net (unless p is an equilibrium
point) and let �4 an optimum strategy. Set
L = min

i=1;:::;j�j
f�ig then, U4k (p) is equal to:

�40jm(p&(0)) �41jm(p&(0)) ::: �4njm(p&(0))

�40jn(p&(1)) �41jn(p&(1)) ::: �4njn(p&(1))

::: ::: ::: :::

�40jv (p&(i)) �41jv (p&(i)) ::: �4njv (p&(i))

::: ::: ::: :::| {z }
�4

Uk(p0)

Uk(p1)

:::

Uk(pi)

:::| {z }
U

(13)
where p is a vector whose elements are those places
which belong to the optimum trajectory ! given by
p0 � p&(1) �Uk p&(2) �Uk ::: �Uk p&(n) �Uk ::: which
converges to p4.

Proof. Since, at each step of the iteration,
U4k (pi) is equal to one of the elements of vector
�; we have that the representation that describes
the dynamical utility behavior of tracking the op-
timum strategy �4 is:

�40jm(p&(0)) �41jm(p&(0)) ::: �4njm(p&(0))

�40jn(p&(1)) �41jn(p&(1)) ::: �4njn(p&(1))

::: ::: ::: :::

�40jv (p&(i)) �41jv (p&(i)) ::: �4njv (p&(i))

::: ::: ::: :::| {z }
�4

Uk(p0)

Uk(p1)

:::

Uk(pi)

:::| {z }
U

where jm; jn; :::; jv; ::: represent the indexes of the op-
timal routing policy, de�ned by the q0js.
Plane symmetry involves moving all points
around the plane so that their positions relative
to each other remain the same, although their ab-
solute positions may change. In analogy, let us
introduce the following de�nition.

De�nition 33 A Decision Process Petri net
DPPN = fP;Q; F;W;M0; �; Ug is said to be
symmetric if it is possible to decompose it into
some �nite number (greater than 1) of sub-Petri
nets in such a way that there exists a bijection  
between all the sub-Petri nets such that

(p; q) 2 I , ( (p);  (q)) 2 I
and (q; p) 2 O , ( (q);  (p)) 2 O

for all of the sub-Petri nets.

Corollary 34 Let DPPN =
fP;Q; F;W;M0; �; Ug be a non blocking (unless
p is an equilibrium point) symmetric Decision
Process Petri net and let �4 be an optimum
strategy. Set L = min

i=1;:::;j�j
f�ig: Then,

�4U � �U 8�; �4

where the �and �4 are represented by a matrix
and U is represented by a vector.

Proof. From the previous corollary and thanks
to the symmetric property, we obtain that 8�; �4
the vector inequality �4U � �U holds.

3.4 Optimum Trajectory Planning

Given a non blocking (unless p is an equilib-
rium point) Decision Process Petri net DPPN =
fP;Q; F;W;M0; �; Ug, the optimum trajectory
planning consists on �nding the �ring transition
sequence u such that the optimum target stateMt

associated with the optimum point is achieved.
The target state Mt belong to the reachability
set R(M0) and, satis�es that it is the last and �-
nal task processed by the DPPN with some �xed
starting state M0 with utility U0.

Theorem 35 The optimum trajectory planning
problem is solvable.

Proof. From what was shown in
theorem 30 for each step we �nd
U4k (p&(1)); :::; U

4
k (p&(i)); :::; U

4
k (p

4). De�ne
a mapping (see remark 23)

ur(U
q4j
k (p&(i))) = [0; :::; 0; 1; 0; :::; 0] (14)

with 1 in position j� and zero everywhere else,

and set u =
P
r
ur((U

q4j
k (p&(i))), where the in-

dex r runs over all the transitions associated to
the subsequence &(i) such that p&(i) converges to
p�, then, by construction the optimum point is
attained.

Remark 36 The order in which the transitions
are �red, is given by the order of the transitions,
inherited from the order of the subsequence p&(i).

3.5 Example

p0

p1
p3

p2
p4

qa

qb

qc

qd

qe

qf

60/124

64/124

40/100

60/100

40/100

60/100

1785



Let us choose the Lyapunov like function L in
terms of the Entropy H(pi) = �pi ln pi.
a) The optimum strategy �4 is: Uk=0(p0) =
1; Uk=0(p1) = L[	(p0; qa; p1)U(p0)] =
L[�0a(p1) � U(p0)] = 0:341; Uk=0(p3) =
L[	(p1; qb; p3)U(p1);	(p1; qc; p3)U(p1)] =
L[�1b(p3) � U(p1); �1c(p3) � U(p1)] = 0:124;
the �ring transition vector is u = [1; 1; 0; 0; 0; 0]:
b) An alternative strategy � 6= �4 is: Uk=0(p0) =
1; Uk=0(p2) = L[	(p0; qd; p2)U(p0)] = L[�0d(p2) �
U(p0)] = 0:351
Uk=0(p4) = L[	(p2; qe; p4)U(p2);	(p2; qf ; p4)U(p2)] =
L[�2e(p4) � U(p2); �2f (p4) � U(p2)] = 0:128; the
�ring transition vector is u� = [0; 0; 0; 1; 0; 1]:

4 Conclusions

A formal framework for decision process sys-
tems has been presented. Stability theory was
used to characterize the dynamical behavior of
the DPPN. It was shown that the DPPN mark-
dynamic and trajectory-dynamic properties con-
verge under some mild restrictions. Finally, an
algorithm for optimum trajectory planning was
described.
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