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EXTENDED ABSTRACT 

Spatially explicit population models are widely 
used to assess wildlife management strategies that 
involve landscape change. However, predictions 
from these models can be highly uncertain due to 
parameter uncertainty. Therefore, if these models 
are to be used to reliably inform wildlife 
management, it is important that we incorporate 
parameter uncertainty into decision making 
processes. Where we are predominantly interested 
in obtaining a rank order of management 
strategies, outranking approaches to decision 
analysis may be particularly appropriate. These 
methods attempt to determine the ranking of 
alternative strategies only in terms of their pair-
wise preference relationships across different 
criteria (e.g., different parameter values). Under 
uncertainty they can allow the robustness of a 
ranking to parameter uncertainty to be assessed. 

In this paper we demonstrate an outranking 
approach for a decision problem in which we 
evaluate a range of alternative koala (Phascolartos 
cinereus Goldfuss) habitat protection strategies for 
a population in New South Wales, Australia. The 
management aim was to minimise the risk of 
population decline and we used a spatially explicit 
koala population model to predict the risk of 
decline. We assumed habitat loss in conjunction 
with four alternative habitat protection strategies, 
defined as: (1) ‘baseline’ – protect no additional 
habitat, (2) ‘protect unfragmented’ – protect an 
additional 260 ha of unfragmented habitat, (3) 
‘protect fragmented’ – protect an additional 260 ha 
of fragmented habitat, and (4) ‘protect highly 
fragmented’ – protect an additional 260 ha of 
highly fragmented habitat. For two different levels 
of dog attack mortality (one high and one low) we 
drew 100 random parameter sets for the population 
model from distributions describing our parameter 

uncertainty. For each parameter combination, 
under each of the alternative habitat protection 
strategies, we estimated the risk of decline (as 
measured by the simulated expected minimum 
population size). We then ranked the strategies 
using the PROMETHEE outranking approach, 
which, as applied here, constructs a ranking based 
on pair-wise comparisons between strategies 
across different parameter combinations. As a 
comparison, we also ranked the strategies simply 
according to the means of the expected minimum 
population sizes. 

The ranking achieved based on the means of the 
expected minimum population sizes, for both 
levels of dog attack mortality, was: protect 
unfragmented  protect fragmented f  protect 
highly fragmented ~ baseline, where f  means ‘is 
preferred to’ and ~ means ‘is indifferent to’. 
However, differences were small and not 
significantly different from each other. The 
outranking approach essentially gave the same 
overall ranking, but indicated that the ranking was 
highly robust to parameter uncertainty when dog 
attack mortality was low, but somewhat less robust 
when dog attack mortality was high. Therefore, at 
least with low dog attack mortality, the strategy 
ranking was robust to parameter uncertainty, even 
though the absolute risk of decline was highly 
variable. 

f

The outranking approach was found to provide 
important information about the robustness of 
management strategy rankings to parameter 
uncertainty. This was not apparent in the more 
traditional approach of simply comparing the mean 
expected minimum population sizes. In many areas 
of natural resource management the sensitivity of 
management strategy rankings to uncertainty is a 
key concern, for which the application of 
outranking approaches are particularly appropriate.    
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1. INTRODUCTION 

Spatially explicit population models provide a 
powerful tool for assessing wildlife responses to 
changes in landscape structure (Wiegand et al. 
1999, With and King 1999). Therefore, these types 
of models are often used to assess wildlife 
management strategies that involve landscape 
change (Lindenmayer and Possingham 1996, 
McCarthy and Lindenmayer 1999). However, 
despite some ongoing debate, it is generally 
accepted that predictions from spatially explicit 
population models can be highly uncertain due to 
the  propagation of errors in parameter estimates 
(Conroy et al. 1995, Wennergren et al. 1995, 
Ruckelshaus et al. 1997, Beissinger and Westphal 
1998). Further, parameters for spatially explicit 
models cannot always be easily estimated from 
existing  data (Dunning et al. 1995), leading to 
greater uncertainty in parameter estimates than for 
simpler models with fewer parameters. Therefore, 
if spatially explicit population models are to be 
used to reliably inform wildlife management, it is 
important that we incorporate parameter 
uncertainty into decision making processes. 

Traditionally, parameter uncertainty has been dealt 
with using sensitivity analysis (Burgman et al. 
1993). However, a preferable approach is to 
explicitly incorporate parameter uncertainty into 
model predictions. This can be achieved by a 
Monte Carlo approach, whereby model predictions 
are obtained for a large number of parameter sets 
drawn from probability distributions that describe 
parameter uncertainty (Wade 2002). This allows 
model predictions to then be summarised as 
probability distributions that explicitly include 
parameter uncertainty. 

Under different management strategies, the 
expected values (or expected utilities) can be 
calculated from the model predictions and then 
used to rank the strategies, based on some 
objective(s). A key assumption of this approach is 
that, for a given management strategy, poor 
probabilistic outcomes are in some way 
compensated for by good probabilistic outcomes. 
However, if the aim is to determine a rank order of 
management strategies, in addition to determining 
how the strategies perform relative to each other 
on average, we are also interested in how sensitive 
the ranking is to parameter uncertainty. Outranking 
approaches to decision analysis are particularly 
useful in this case because they attempt to 
determine the ranking of alternative strategies only 
in terms of their pair-wise preference relationships 
across different criteria (in this case different 
parameter values). Importantly, outranking 

methods make no assumptions about compensation 
between different criteria (Stewart 1992).  

In this paper we demonstrate the outranking 
approach for a decision problem in which we 
evaluated a range of alternative koala habitat 
protection strategies. The management aim was to 
minimise the risk of decline of a koala population 
in New South Wales, Australia and we used a 
spatially explicit koala population model to predict 
the risk of decline. We show that the outranking 
approach provides information on how robust 
strategy rankings are to parameter uncertainty that 
is not apparent using an expected utility approach. 

2. METHODS 

2.1. Study Area 

The study area was situated within the Port 
Stephens Local Government Area, New South 
Wales, approximately 150 km north of Sydney. 
Port Stephens contains one of the most significant 
koala populations in New South Wales, but the 
population is threatened by habitat destruction, 
vehicle collision mortality and dog attacks (Port 
Stephens Council 2001). 

2.2. Population Model 

We used a spatially explicit population model to 
simulate the dynamics of the koala population in 
the study area (Rhodes 2005). Landscape structure 
was incorporated by explicitly linking the model to 
the spatial distribution of koala habitat, main roads 
and barriers to movement (Lunney et al. 1998, 
Rhodes 2005, Rhodes et al. 2005). In this 
application, the population model had 24 
parameters that we estimated from empirical data 
collected from the study area and from the 
literature. 

The population model was individual-based and 
included reproduction, survival and dispersal / 
habitat selection processes. Each koala’s location 
and home range size was explicitly defined on the 
landscape. Home range size was dependent on the 
amount of good quality habitat in the vicinity of 
each koala (determined by two parameters: ahr and 
bhr) and home ranges were allowed to overlap. 
Annual adult reproductive rates were dependent on 
the proportion of good quality habitat in each 
koala’s home range (determined by one parameter: 
hthresh) and the extent of overlap with other koalas’ 
home ranges (determined by two parameters: f0 
and α), thus introducing a form of density-
dependence. We also allowed reproductive rates to 
vary stochastically. Natural survival rates were 
constant, but different for dependent young and 
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adults (determined by two parameters: SJ and 
). Survival rates due to dog attacks were 

constant (determined by one parameter: 

( )n

AS
( )d

AS ). 
Survival rates due to traffic collisions depended 
upon the density of roads and traffic volume in 
each koala’s home range (determined by four 
parameters: ar, br, cr and dr). For the dispersal / 
habitat selection processes we employed a 
directionally-biased correlated random walk model 
(determined by seven parameters: λsteps, σturn, 
wprimsec, wmarg, wother, wclear, dmax). Dispersing koalas 
were also subjected to additional mortality risk if 
they crossed a road and this risk depended on the 
traffic volume (determined by three parameters: W, 
L, v). For a full description of the population 
model and parameter values see Rhodes (2005). 

2.3. Parameter Uncertainty 

For 16 of the parameters we were able to estimate 
either sampling distributions, based on normal 
approximations, or empirical distributions derived 
from Monte Carlo simulations (Rhodes 2005). 
These distributions were assumed to represent our 
uncertainty about those parameter values. 
Although sampling distributions are not strictly the 
same as parameter distributions, we believed they 
were sufficiently close to Bayesian posterior 
distributions with an uninformative prior for our 
purposes (Wade 2000). We did not consider 
uncertainty in the remaining parameters because 
we were able to estimate their uncertainty 
distributions. 

2.4. Management Strategies and Simulations 

We considered four alternative habitat protection 
strategies. However, mortality due to dog attacks 
was estimated to account for around half of total 
adult mortality in this koala population. This 
meant that the population was predicted to go 
rapidly and deterministically extinct, regardless of 
the amount of habitat in the landscape. This 
suggests that management strategies are required 
that combine both habitat protection and 
reductions in dog attack mortality. Therefore, the 
habitat protection strategies were considered in 
combination with either a 50% or 100% reduction 
in dog attack mortality. Achieving a 100%, or even 
a 50%, reduction in dog attack mortality may be 
difficult in reality. However, our aim was to gain a 
general understanding of the importance of dog 
attack mortality for the outcome of alternative 
habitat protection strategies, rather than to 
prescribe specific reductions in dog attack 
mortality. For all habitat protection strategies, land 
zoned as environmental protection (Port Stephens 
Council 2000) was assumed to be protected from 

clearing, but each strategy differed in which 
additional habitat it protected. The strategies were 
defined as: (1) ‘baseline’ – protect no additional 
habitat, (2) ‘protect unfragmented’ – protect an 
additional 260 ha of unfragmented habitat, (3) 
‘protect fragmented’ – protect an additional 260 ha 
of fragmented habitat, and (4) ‘protect highly 
fragmented’ – protect an additional 260 ha of 
highly fragmented habitat. 

From the parameter uncertainty distributions we 
drew 100 random parameter sets. Then, for each 
parameter set, we simulated 100 replicates of the 
dynamics of the population under each dog attack 
mortality rate and the four different habitat 
protection strategies. We ran each simulation for 
100 years and then assumed a linear 50% loss of 
unprotected vegetation cover over the next 100 
years. The pattern of vegetation loss was assumed 
to be spatially correlated and was simulated by a 
mid-point displacement fractal algorithm, with 
fractal dimension 2.9 (Saupe 1988). For each 
separate parameter set we then calculated, from the 
100 replicates, the expected minimum population 
size during the 100 year period of habitat loss. The 
expected minimum population size provided an 
index of the expected risk of decline of the 
population (McCarthy and Thompson 2001). 

2.5. Decision Analysis 

The starting point of any decision analysis is to 
define the management objective(s). In our case 
we assumed that the objective was to minimise the 
risk of decline in the koala population. That is, a 
strategy with a high expected minimum population 
size was better than a strategy with a low expected 
minimum population size. We then applied the 
PROMETHEE outranking method, as described by 
Drechsler et al. (2003), to determine a rank order 
for the alternative habitat protection strategies 
under parameter uncertainty for both levels of dog 
attack mortality. 

The PROMETHEE outranking approach for 
multiple criteria decision analysis is based on pair-
wise comparisons between alternative strategies 
(Brans and Mareschal 2005). Consider the multi-
criteria problem 

( ) ( ) ( ){ }Aaagagag k ∈|,...,,max 21 , (1)       

where A is a finite set of alternative management 
strategies and {g1( ), ..., gk( )} is a set of evaluation 
criteria. We can then define preference functions, 

( )baP ,j , for each criterion, j, for management 
strategy a over b as 
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( ) ( ) ( )( ) AbabgagFbaP jjjj ∈∀−= ,       , , (2) 

where 0 ≤ Pj(a, b) ≤ 1 and Fj( ) is a monotonically 
increasing function. If {w1, w2, ..., wk} are then a 
set of weights of the relative importance of the 
evaluation criteria, then the degree to which a is 
preferred to b, π(a, b), known as the aggregated 
preference index, is defined as 

( ) ( )∑
=

=π
k

j
jj wbaPba

1

,, , (3) 

where . The value, π(a, b), is a weighted 

sum of the preferences for a over b across all 
criteria. A value of π(a, b) close to zero indicates a 
weak global preference for a over b and a value of 
π(a, b) close to one indicates a strong global 
preference for a over b. 

∑
=

=
k

j
jw

1

1

Now, if there are n alternative management 
strategies in A, then the positive outranking flow 
for strategy a is 

( ) (∑
∈

+ π
−

=φ
Ax

xa
n

a ,
1

1 ) , (4) 

and the negative outranking flow for strategy a is 

( ) (∑
∈

− π
−

=φ
Ax

ax
n

a ,
1

1 )

( )−φ

. (5) 

The positive outranking flow, , is a measure 
of the extent to which a outranks all the other 
management strategies (high values are better then 
low values), while the negative outranking flow, 

, is a measure of how a is outranked by all 
the other management strategies (low values are 
better than high values). Either of these measures 
can be used to provide a partial ranking, but 
preferences according to the positive outranking 
flow can conflict with preferences according to the 
negative outranking flow, leading to 
incomparabilities. However, we can also form a 
complete ranking based on the net outranking 
flow, defined as 

( )+φ

( ) ( ) ( )aaa −+ φ−φ=φ . (6) 

Here, the higher the net outranking flow, ( )φ ,  the 
better the management strategy. 

Following Drechsler et al. (2003) we treated each 
parameter combination as a separate evaluation 
criterion. Since each parameter combination was a 

random draw from a probability distribution, we 
assigned them each equal weight, i.e. wj = 0.01. A 
preference function, Pj(a, b) was then defined so 
that, under parameter combination j, Pj(a, b) 
equalled one if the expected minimum population 
size for strategy a was greater then strategy b and 
zero otherwise (Figure 3, for alternative preference 
functions see Brans and Mareschal 2005). We then 
calculated partial and complete rankings for the 
habitat protection strategies using the 
PROMETHEE method described above, for both 
levels of dog attack mortality. As a comparison, 
we also ranked the habitat protection strategies 
based simply on the means of their expected 
minimum population sizes. This is essentially an 
expected utility approach assuming utility is equal 
to the expected minimum population size.    

 
Figure 3. The preference function used in the 

decision analysis. P is the preference function for 
strategy a over b and d is the difference in 

expected minimum population sizes between the 
two strategies. 

3. RESULTS 

The ranking obtained from the means of the 
expected minimum population sizes, for both dog 
attack mortality rates, was: protect unfragmented 

 protect fragmented  protect highly 
fragmented ~ baseline, where  means ‘is 
preferred to’ and ~ means ‘is indifferent to’ (Table 
1). However, differences were small and not 
significantly different from each other (paired t-
tests, df = 99, p > 0.05). 

f f
f

For the outranking approach, with a 50% reduction 
in dog attack mortality, the complete ranking was 
the same as indicated by the means of the expected 
minimum population sizes (Table 2). However, 
with a 100% reduction in dog attack mortality, the 
protect highly fragmented strategy was preferred to 
the baseline strategy (Table 3). 
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Table 1. Means and standard errors (in 
parentheses) of the expected minimum population 
sizes (expressed as a proportion of the mean 
population size just prior to the start of the habitat 
loss). 

Habitat protection strategy *Dog attack 
mortality B U F HF 

50% 
reduction 

0.28 
(0.29) 

0.30 
(0.31) 

0.29 
(0.30) 

0.28 
(0.29) 

Ranking 3= 1 2 3= 
100% 

reduction 
0.56 

(0.24) 
0.60 

(0.25) 
0.58 

(0.25) 
0.56 

(0.24) 
Ranking 3= 1 2 3= 

* B = baseline, U = protect unfragmented, F = 
protect fragmented, and HF = protect highly 
fragmented. 

Table 2. Matrix of the aggregated preference 
indices, π( ), negative outranking flows, ( )−

( )+φ
( )φ

φ , 
positive outranking flows, , and net 
outranking flows, , with a 50% reduction in 
dog attack mortality. 

Habitat protection strategy *Habitat 
protection 
strategy *

B U F HF 
( )+φ  

B 0 0.20 0.25 0.32 0.26 
U 0.51 0 0.56 0.56 0.54 
F 0.45 0.15 0 0.50 0.36 

HF 0.41 0.16 0.21 0 0.26 
( )−φ  0.46 0.17 0.34 0.46  

( )φ  -0.20 0.37 0.02 -0.20  
Complete 
ranking 

3= 1 2 3=  

* B = baseline, U = protect unfragmented, F = 
protect fragmented, and HF = protect highly 
fragmented. 

With a 50% reduction in dog attack mortality there 
was considerable conflict in habitat protection 
strategy preferences across different parameter 
values. Although the protect unfragmented strategy 
was ranked as the best overall, it was only 
preferred to the any of the other strategies just over 
50% of the time (Table 2). In fact, the aggregated 
preference indices indicated considerable conflict, 
and indifference, in preferences for all pair-wise 
comparisons, especially between the baseline and 
protect highly fragmented strategies (Table 2).  
However, with a 100% reduction in dog attack 
mortality there was far less conflict in the habitat 
protection strategy preferences across different 
parameter values. In this case, the protect 
unfragmented strategy was preferred to any of the 
other strategies around 90% of the time and was 
clearly the best strategy (Table 3). Also, the 

aggregated preference indices for all pair-wise 
comparisons revealed strong preferences for one of 
the strategies over the other (Table 3). Therefore, 
the habitat protection strategy ranking, with a 
100% reduction in dog attack  mortality, was far 
more robust to parameter uncertainty than with 
only a 50% reduction in dog attack mortality.     

Table 3. Matrix of the aggregated preference 
indices, π( ), negative outranking flows, ( )−φ

( )+

, 
positive outranking flows, φ , and net 
outranking flows, ( )φ , with a 100% reduction in 
dog attack mortality. 

Habitat protection strategy *Habitat 
protection 
strategy *

B U F HF 
( )+φ  

B 0 0.04 0.10 0.24 0.13 
U 0.91 0 0.88 0.91 0.90 
F 0.85 0.06 0 0.86 0.59 

HF 0.71 0.05 0.10 0 0.29 
( )−φ  0.82 0.05 0.36 0.67  

( )φ  -0.69 0.85 0.49 -0.38  
Complete 
ranking 

4 1 2 3  

* B = baseline, U = protect unfragmented, F = 
protect fragmented, and HF = protect highly 
fragmented. 

4. DISCUSSION 

4.1. Dealing with Uncertainty 

A thorough consideration of uncertainty is crucial 
if we want to make robust decisions for wildlife 
management and conservation (Regan et al. 2002). 
Not only is it important that we adequately 
characterise uncertainty in model predictions, but 
also that uncertainty is appropriately accounted for 
in decision making. The outranking approach 
demonstrated in this paper provides a straight 
forward and transparent means of incorporating 
parameter uncertainty into a decision analysis. Its 
strength is that it makes no assumption about 
compensation between the outcomes for different 
parameter values and allows the robustness of 
management strategy rankings to parameter 
uncertainty to be assessed. 

In our application to koala conservation we were 
mainly concerned with obtaining a qualitative 
ranking for the alternative habitat protection 
strategies. The outranking approach was well 
suited in this case because it allowed us to directly 
assess how robust rankings were to parameter 
uncertainty. We found that rankings were robust to 
parameter uncertainty with no dog attack 
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mortality, but far less robust with dog attack 
mortality at 50% of its estimated value. In contrast, 
the standard errors of the mean expected minimum 
population sizes (Table 1) revealed large variations 
in the absolute risk of decline due to parameter 
uncertainty. This made it difficult to distinguish 
alternative strategies from each other, based on the 
mean expected minimum population sizes, for both 
dog attack mortality rates. At least in the case of 
no dog attack mortality, the outranking approach 
showed the ranking to be robust to parameter 
uncertainty, even though absolute predictions 
varied substantially. Drechsler et al. (2003) show a 
similar result using a metapopulation model for the 
Glanville fritillary butterfly (Melitaea cinxia) in 
Finland. These findings also support the 
hypothesis that management strategy rankings 
derived from population models tend to be far 
more robust to uncertainty than absolute model 
predictions (McCarthy et al. 2003).                      

4.2. Implications for Koala Conservation 

When the dog attack mortality rate was only 
reduced by 50%, the difference between the 
alternative habitat protection strategies was smaller 
than when dog attack mortality was reduced by 
100%. Further, the absolute risk of decline was 
much higher with a 50% than a 100% reduction in 
dog attack mortality. This is a consequence of the 
high sensitivity of the risk of decline to adult 
mortality. Essentially, the habitat protection 
strategies were found to be far less effective when 
dog attack mortality was high than when it was 
low. Under high dog attack mortality it did not 
really matter which habitats were protected 
because, for a large number of parameter 
combinations the population went 
deterministically extinct. The implications of this 
are that, where anthropogenic influences have 
substantially elevated koala mortality rates, 
management strategies that both protect habitat 
and reduce mortality rates are likely to be required. 

The conflict in strategy rankings, even with dog 
attack mortality reduced to 50% of its estimated 
value, indicates that, unless dog attack mortality is 
reduced substantially, it is difficult to rank the 
alternative habitat protection strategies. To obtain 
a more robust ranking we would need to reduce the 
amount of uncertainty in the parameter estimates 
by collecting more data. Therefore, the decision 
analysis approach described in this paper can also 
help to guide future monitoring and data collection 
within a decision making context. 

 

 

4.3. Limitations and Future Research 

Although we accounted for parameter uncertainty 
in the decision analysis, we were unable to 
characterise uncertainty distributions for some 
parameters. Therefore, we almost certainly 
underestimated the amount of uncertainty in our 
model predictions due to parameter uncertainty. 
Hence, developing methods that account for 
parameter uncertainty in decision analyses when it 
is difficult to define parameter distributions is an 
important area for future research. Methods such 
as probability bounds analysis may provide a 
useful way forward in this respect, at least for 
some models (Ferson and Hajagos 2004). 

A further limitation of the approach we used in this 
paper was that we only dealt with one management 
objective; to minimise the risk of decline. 
However, in many situations we will have multiple 
management objectives, or criteria, as well as 
prediction uncertainty. In these cases, a slightly 
different approach will be required. Outranking 
approaches for stochastic data have been 
developed that may deal with this problem, but this 
remains an active area of research (Martel and 
Matarazzo 2005). 

5. CONCLUSIONS 

Decision analysis methods that deal with 
uncertainty are central to robust decision making 
in natural resource management. In this paper we 
have shown that, when we are primarily interested 
in ranking management strategies, outranking 
approaches are useful methods for dealing with 
parameter uncertainty. 
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