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EXTENDED ABSTRACT 
 
The problem of estimating the settlement of shal-
low foundations on granular soils is complex and 
not yet entirely understood.  In the past, many em-
pirical and theoretical methods have been devel-
oped for predicting the settlement of shallow foun-
dations on granular soils; however, these methods 
are far from accurate and consistent.  In recent 
times, artificial neural networks (ANNs) have been 
used for settlement prediction of shallow founda-
tions on granular soils and have shown to outper-
form the most commonly used traditional methods.  
However, despite the relative advantage of the 
ANN based approach, it is like most traditional 
methods in the sense that it is based on a determi-
nistic approach that does not take into account the 
considerable level of uncertainty that may affect 
the magnitude of the predicted settlement.  Thus, it 
provides single values of settlement with no indi-
cation of the level of risk associated with these 
values.  In this paper, an alternative stochastic ap-
proach that considers the uncertainty associated 
with the predicted settlement from a deterministic 
ANN model is provided.  The proposed stochastic 
approach is based on combining Monte Carlo 
simulation with the deterministic ANN model 
from which a set of stochastic design charts for 
settlement prediction of shallow foundations on 
granular soils is developed.  The charts will enable 
the designer to make informed decisions regarding 
the level of risk associated with predicted settle-
ments and consequently provide a more realistic 
indication of what the actual settlement might be. 
 
1 INTRODUCTION 
 

The settlement prediction of shallow foundations 
is often affected by a considerable level of uncer-
tainty that may produce an unreliable estimation of 
the magnitude of settlement, while reliable settle-
ment prediction is essential for design purposes.  
Uncertainty affecting settlement prediction is gen-
erally caused by one or two of the following 
sources: (a) input variable uncertainty, which is 
caused by the errors in measurements associated 
with the variables used for settlement prediction; 
and (b) prediction method uncertainty, which is 
caused by the inherent error associated with the 
modelling technique used to characterise settle-
ment prediction (Cherubini and Greco 1991; 
Krizek et al. 1977). Most deterministic modelling 
methods for settlement prediction of shallow foun-
dations on granular soils disregard the above un-
certainties in their analysis and simulation.  One 
way to include such uncertainties is to use stochas-
tic simulation.  Recently, artificial neural networks 
(ANNs) have been used successfully for settlement 
prediction of shallow foundations on granular soils 
and have been found to outperform the most com-
monly used traditional methods (Shahin et al. 
2002b).  However, ANNs, like most traditional 
methods of settlement prediction, are based on de-
terministic approaches that ignore the  uncertainty 
that may affect the magnitude of the predicted set-
tlement.   
 
This paper is concerned with the application of 
stochastic analysis that incorporates prediction 
method uncertainty to deterministic ANN models 
for settlement prediction of shallow foundations on 
granular soils.  Application of stochastic analysis 
that incorporates input variable uncertainty to 
ANN models for settlement prediction of shallow 
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foundations on granular soils has been carried out 
by Shahin et al. (Shahin et al. 2005).  Uncertainty 
associated with the prediction method is difficult 
to measure physically (Juang et al. 1991); how-
ever, if sufficient measured and predicted settle-
ment data are available and assuming that the 
measured settlements are error free, then predic-
tion method uncertainty can be quantified and used 
for the stochastic analysis of settlement prediction.  
This can be carried out by calculating the settle-
ment ratio, k, which is defined as the ratio of the 
predicted settlement to the actual measured settle-
ment (Cherubini and Greco 1991; Sivakugan and 
Johnson 2002).  By utilising the above definition 
of k, and if a set of predicted and measured settle-
ment is available, the settlement ratios can be cal-
culated and used to obtain the probability density 
function (PDF) of k, which is a key issue for the 
stochastic analysis of settlement prediction, as will 
be described in Section 3.  If the settlement predic-
tion data used to estimate the PDF of k contain 
outliers (i.e. some cases within the available data 
have values of predicted settlements far from those 
of measured ones), the distribution of k,  and con-
sequently the final results of the stochastic pre-
dicted settlements, will be affected.  As a result, 
excluding outliers from the settlement prediction 
data used to estimate the PDF of k will improve 
the stochastic analysis.  In a previous work (Shahin 
et al. 2005) carried out by the authors of the cur-
rent paper for the stochastic analysis of settlement 
prediction of shallow foundations, outliers of the 
data used to estimate the PDF of k were not ex-
cluded.  The present paper is an extension to the 
work carried out previously by the authors where 
the stochastic analysis of settlement prediction of 
shallow foundations is improved by statistically 
analysing and excluding any possible outliers from 
the data used to estimate the PDF of k.  Based on 
improved stochastic analysis, a set of stochastic 
design charts for settlement prediction of shallow 
foundations on granular soils is also developed and 
provided for routine use in practice.  
 
2 DETERMINISTIC ARTIFICIAL 

NEURAL NETWORK MODEL 
 
The present study uses an artificial neural network 
(ANN) model to obtain deterministic settlement 
predictions of shallow foundations on granular 
soils.  The ANN model was developed by Shahin 
et al. (2002b) and uses feedforward multi-layer 
perceptrons (MLPs) that are trained with the back-
propagation algorithm (Rumelhart et al. 1986).  
The software package Neuframe Version 4.0 
(Neusciences 2000) was used for this purpose.  
Details of the ANN model development are be-
yond the scope of this paper and are given by        
Shahin et al. (2002b).  The model has five inputs 

representing the footing width, B, net applied foot-
ing load, q, average blow count obtained using a 
standard penetration test (SPT) over the depth of 
influence of the foundation, N, (this is used as a 
measure of soil compressibility), footing geometry, 
L/B, and footing embedment ratio, Df /B.  The sin-
gle model output is foundation settlement, Sm .  
The database used for model development com-
prises a total of 189 individual cases, which is al-
most the largest data set used to develop such 
models.  The data were obtained from the literature 
and span a wide range of the input and output data 
cases, as summarised in Table 1.  The available 
 
Table 1. Data ranges used for the ANN model 

Model variables Min. Max. 
Footing width, B (m) 0.8 60.0 
Net applied load, q (kPa) 18.3 697.0 
 SPT blow count, N 4.0 60.0 
Footing geometry, L/B 1.0 10.5 
Embedment ratio, Df  /B 0.0 3.4 
Settlement, Sm (mm) 0.6 121.0 

 
data were divided randomly into three sets: train-
ing, testing and validation, in such a way that they 
are statistically consistent and thus represent the 
same statistical population (Masters 1993).  The 
training set was used to adjust the model free pa-
rameters (i.e. connection weights), the testing set 
was used to decide when to stop training to avoid 
overfitting, and the validation set was used to test 
the predictive ability of the model in real-world 
situations.  In total, 80% of the data were used for 
training and 20% were used for validation.  The 
training data were further divided into 70% for the 
training set and 30% for the testing set.  The opti-
mum model geometry was determined using a 
trial-and-error approach in which ANN models 
were trained with one hidden layer and 1, 2, 3, 5, 
7, 9 and 11 hidden layer nodes, respectively.  The 
optimal network parameters were obtained by 
training the ANN model with different combina-
tions of learning rates and momentum terms.  A 
model with 2 hidden layer nodes, a learning rate of 
0.2, and a momentum term of 0.8 was found to 
perform best.  Details of the above parameters are 
given by Shahin et al. (2002b).  The performance 
of the ANN model is summarised in Table 2.  It 
can be seen that the model performs well, as it has 
high correlation coefficients, r, and low root mean 
squared errors (RMSE) and mean absolute errors 
(MAE) between the measured and predicted set-
tlements for all three data sets (i.e. training, testing 
and validation).  A comparison carried out by  
Shahin et al. (2002b) on the validation set, and 
utilising the ANN model and three of the most 
commonly used traditional methods indicated that 
the ANN method provides more accurate predic-
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tions than the traditional methods.  In order to fa-
cilitate the ANN technique for deterministic set-
tlement prediction of shallow foundations on 
granular soils, the information obtained from the 
ANN model was translated into a relatively simple 
hand-calculation formula (Shahin et al. 2002a) and 
also into a set of design charts (Shahin 2003) suit-
able for practical use.  
 
Table 2. Performance of the ANN model 

Data set  r RMSE 
(mm) 

MAE 
(mm) 

Training 0.930 10.01 6.87 
Testing 0.929 10.12 6.43 
Validation 0.905 11.04 8.78 

 
3 STOCHASTIC SETTLEMENT 

PREDICTION 
 
In order to determine the impact of the prediction 
method uncertainty on predicted settlements ob-
tained from the ANN technique, Monte Carlo 
simulation is applied to the deterministic ANN 
model described previously.  Monte Carlo simula-
tion attempts to generate a random set of values 
from known or assumed probability distributions 
of some variables involved in a certain problem.  
Full details of the Monte Carlo technique are given 
by many authors (e.g. Hammersley and Hand-
scomb 1964; Rubinstein 1981).  As mentioned 
previously, prediction method uncertainty for set-
tlement of shallow foundations can be examined 
by calculating the settlement ratio, k, for a set of 
predicted versus measured settlements and obtain-
ing the probability density function (PDF) of k, 
which is used for the stochastic analysis, as will be 
described below.  The distribution of k is obtained 
using the 189 case records used by Shahin et al. 
(2002b) for the development of the deterministic 
ANN model.  The values of k are found to lie in 
the range 0.25 to 10.4.  The mean value of k is 1.4 
and the standard deviation is 1.3.   As mentioned 
previously, possible outliers in the data used for 
the estimation of the PDF of k will result in false 
evaluation of its distribution, which in turn will af-
fect the final results of the stochastic predicted set-
tlements.  Consequently, The box plot method 
(Kotzais et al. 1990), as proposed by Cherubini 
(2000), is used to eliminate any possible outliers 
from the data used for the estimation of the PDF of 
k.  As part of the method, the central tendency of k 
is indicated by the median, whereas its spread is 
indicated by the lower (QL) and upper (QU) quar-
tiles.  Points whose values are either less than (QL–
1.5IQD) or greater than (QU+1.5IQD), where IQD 
is the interquartile distance and is equal to (QU– 
QL ), are considered to be outliers.  Such a plot is 
shown in Figure 1 for the available data.  It can be 

seen that some points are greater than QU+1.5IQD.  
Consequently, these data points may be considered 
to be outliers and are omitted from the data used to 
estimate the PDF of k.  The number of outliers are 
found to be 20 out of 189 data records, resulting in 
169 data records that are used to obtain the PDF of 
k.  The PC-based software @Risk (Palisade 2000) 
is used to determine the PDF that provides the best 
fit to the remaining 169 data points.  For a given 
set of data values, @Risk can identify the prob-
ability distribution that best fits these values from 
38 candidate distributions and provides statistical 
properties that describe the distribution.  The theo-
retical distribution that is found to best match the 
actual distribution of k is the Weibull distribution 
(Johnson and Leone 1964), as shown in Figure 2.  
The statistical properties of the Weibull distribu-
tion obtained are given in Table 3.  
 

0 2 4 6 8 10 12
k = predicted settlement/measured settlement 

Outliers Upper Quartile = 1.6
Median = 1.07 Lower Quartile = 0.7 

Lower Quartile-1.5IQD = 0.3

Upper Quartile+1.5IQD = 2.95 

 
Figure 1. Box plot for 189 data record of k 
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Figure 2. Weibull distribution of k 
 
Table 3. Weibull distribution parameters of k 

Statistical parameter Value 
Minimum 0.25 
Maximum 2.80 
Mean 1.06 
Standard deviation 0.53 
Shape parameter (α) 1.59 
Scale parameter (β) 0.91 
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It can be seen from Table 3 that removing the out-
liers from the analysis of k resulted in a reduction 
in the mean and standard deviation of k to 1.06 and 
0.53, respectively.  A Monte Carlo simulation can 
then be conducted to estimate the uncertainty asso-
ciated with the predicted settlements.  The detailed 
procedure is as follows: 
 
1. The PDF of k is estimated using a set of pre-

dicted and measured settlements, as described 
above; 

2. For an individual case of settlement predic-
tion, the deterministic settlement is calculated 
using the ANN model developed by Shahin et 
al. (2002b), hand-calculation formula (Shahin 
et al. 2002a) or deterministic design charts 
(Shahin 2003); 

3. A random value of k is generated from the 
PDF of k obtained in Step 1; 

4. From the definition of k, the deterministic 
predicted settlement in Step 2 is divided by 
the generated random value of k from Step 3 
and the corresponding actual settlement is cal-
culated;   

5. Steps 3 and 4 are repeated for many iterations 
(Monte Carlo simulation); and 

6. The settlements obtained as part of the Monte 
Carlo simulation are used to estimate the cu-
mulative distribution function (CDF) or to plot 
the cumulative probability distribution from 
which the probability of non-exceedance 
(PN/E), or level of risk, associated with a cer-
tain settlement prediction, can be estimated. 

 
4 NUMERICAL EXAMPLE 
 
The following case study is examined.  A rectan-
gular footing, the dimensions of which are 2.5 × 
4.0 m, is founded at a depth of 1.5 m below the 
ground surface.  The soil beneath the footing is 
sand that extends to a depth in excess of two times 
its width.   The net applied footing load is 350 kPa 
and the average SPT blow count is 16.   
 
Solution: The steps described previously for the 
inclusion of prediction method uncertainty are 
used as follows.  The PDF of k for the ANN 
method is obtained (Step 1) and was found to fit a 
Weibull distribution, as described previously.  The 
deterministic single solution of settlement predic-
tion is obtained from the ANN model given by 
Shahin et al. (2002b) and is found to be 13.3 mm 
(Step 2).  From the statistical properties of the 
Weibull distribution obtained in Step 1, random 
values of k are generated (Step 3).  The numerical 
example is re-calculated by dividing the settlement 
predicted in Step 2 by the generated value of k ob-
tained from Step 3 and a corresponding actual set-
tlement is calculated (Step 4).  Steps 3 and 4 are 

repeated many times (Monte Carlo simulation) un-
til a convergence criterion is achieved (Step 5).  In 
order to determine whether convergence has been 
achieved, the statistics describing the distribution 
of the predicted settlements are calculated at fixed 
numbers of simulations and compared with the 
same statistics at previous simulations.  Conver-
gence is deemed to have occurred if the change in 
the statistics describing the distribution of pre-
dicted settlement is 1% or less.  It was found that 
1,400 simulations are sufficient to achieve conver-
gence.  The predicted settlements obtained for the 
1,400 simulations are used to plot the cumulative 
probability distribution curve from which different 
probabilities of non-exceedance are obtained (Step 
6).  The results are shown in Figure 3, which also 
includes the deterministic single settlement value 
of 13.3 mm, and summarised in Table 4.  It can be 
seen from Figure 3 that there is a probability of 
approximately 62% that the settlement will not ex-
ceed the deterministic single estimate of 13.3 mm, 
which means that there is 38% probability that the 
settlement could be higher than the deterministic 
estimate of 13.3 mm.  This result indicates that 
prediction method uncertainty can affect settle-
ment and thus, should not be neglected in the 
analysis and simulation of settlement prediction.  
In addition, there are probabilities of 75%, 80%, 
85%, 90% and 95% (i.e. probability levels that 
may be needed for design purposes) that the set-
tlement will not exceed 15.4, 16.1, 17.0, 18.0 and 
19.3 mm, respectively (Table 4).   
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Figure 3. Cumulative probability distribution in-
corporating model uncertainty for the numerical 
example 
 
Table 4. Predicted settlement accounting for 
model uncertainty for the numerical example 

P(N/E) (%) Settlement (mm) 
75 15.4 
80 16.1 
85 17.0 
90 18.0 
95 19.3 
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Figure 4. Stochastic ANN-based design charts for settlement prediction (PN/E = Probability of non-
exceedance) 
 
5 STOCHASTIC SETTLEMENT 

PREDCITION DESIGN CHARTS  
 
The stochastic simulation proposed in this study 
that incorporates the ANN prediction method un-
certainty is used to develop a generic set of sto-
chastic design charts based on the ANN model.  
The charts are expected to be a useful tool for 
practitioners, from which the level of risk associ-
ated with predicted settlement can be readily ob-
tained.  Since the ANN model predicts the most 
accurate settlement estimates to date (Shahin et 
al. 2002b), the subsequent stochastic design 
charts are considered to be the most reliable of 
those currently available.  The procedure that is 
used to develop the charts is as follows: 
 
1. A random synthetic value of predicted set-

tlement, which accounts for an individual 
case of settlement prediction, is generated be-
tween the ranges given in Table 1; 

2. The approach, outlined previously, that in-
corporates prediction method uncertainty for 

obtaining a stochastic settlement prediction is 
applied to the settlement predicted in the pre-
vious step and the corresponding CDF is ob-
tained;  

3. From the above CDF, the 75%, 80%, 85%, 
90% and 95% probabilities of non-
exceedance are determined; 

4. Another random synthetic value of predicted 
settlement is generated by increasing the 
value generated in Step 1 by 5% of the total 
range between the minimum and maximum 
values given in Table 1; 

5. Steps 2 to 4 are repeated until the maximum 
synthetic value of predicted settlement is 
reached; and  

6. For each probability level of non-exceedance, 
the synthetic deterministic settlements are 
plotted against stochastic settlements and a 
set of design charts is generated, as shown in 
Figure 4. 

 
For any individual case of settlement prediction 
within the ranges of the data shown in Table 1, 
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the deterministic single settlement prediction can 
be obtained from the ANN model given by  
Shahin et al. (2002b), hand-calculation formula 
(Shahin et al. 2002b) or the deterministic design 
charts  (Shahin 2003), and the corresponding sto-
chastic settlement can be readily obtained from 
Figure 4,  accounting for a certain desired prob-
ability of non-exceedance.  For example, if the 
deterministic ANN model predicts a settlement of 
22 mm and reliability levels (i.e. probabilities of 
non-exceedance) of 90% and 95% are required, 
the corresponding design stochastic settlements 
(Figure 4) are 32 and 34 mm, respectively.  It 
should be noted that the applicability of these 
charts is constrained by the range of the 169 data 
records used to characterise the uncertainty asso-
ciated with the settlement ratio, k (Table 1), as de-
scribed previously.  However, the range of appli-
cability of the approach can be extended in future, 
by re-training the ANN model and re-generating 
the design charts should additional data records 
become available.  It should also be noted that, as 
mentioned earlier, the stochastic solution that in-
corporates prediction method uncertainty relies on 
the estimation of the PDF of k and consequently, 
as many case records of settlement prediction as 
possible are needed in order to obtain a reliable 
estimate of the PDF of k.  For further verification 
of the stochastic design charts, values obtained 
using the charts need to be compared with corre-
sponding actual measured settlements of some 
additional case records, once available. 
 
6 CONCLUSIONS 
 
The results of the numerical example that incor-
porates prediction method uncertainty in the 
analysis of settlement of shallow foundations on 
granular soils indicated that there was a probabil-
ity of approximately 38% that the settlement 
could be higher than the deterministic single esti-
mation.  This result indicated that prediction 
method uncertainty affects settlement and thus 
should not be neglected in the analysis and simu-
lation of settlement prediction.  It was shown in 
this work that the developed stochastic charts can 
be used to predict settlements for a certain desired 
reliability level given the deterministic settlement 
predicted from the ANN model developed by 
Shahin et al. (2002b), which is believed to be a 
useful tool in the design of shallow foundations 
on granular soils. 
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