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EXTENDED ABSTRACT 
 
Artificial neural networks (ANNs) have been used 
as a prediction tool in many areas of engineering.  
In order to test the robustness and generalisation 
ability of ANN models, the approach that is gener-
ally adopted is to test the performance of trained 
ANNs on an independent validation set.  If such 
performance is adequate, the model is deemed to 
be robust and able to generalise.  However, this is 
not necessarily the case.  In this paper, the robust-
ness of ANN models is investigated for a case 
study of predicting the settlement of shallow foun-
dations on granular soils.  A procedure that tests 
the robustness of the predictive ability of ANN 
models is introduced.  The results indicate that 
good performance of ANN models on the data 
used for model calibration and validation does not 
guarantee that the models will perform in a robust 
fashion over a range of data similar to that used in 
the model calibration phase.  The results also indi-
cate that validating ANN models using the proce-
dure provided in this study is essential in order to 
investigate their robustness.  
 
1 INTRODUCTION 
 
In recent years, artificial neural network (ANN) 
models have been used extensively for prediction 
purposes in civil engineering.  Details of the struc-
ture and operation of ANNs are beyond the scope 
of this paper and can be found in many publica-
tions (Fausett 1994).  ANNs are similar to most 
traditional statistical models in the sense that 
model parameters (i.e. connection weights) are ad-
justed in a model calibration phase called “train-
ing” so as to minimise the error between the pre-
dicted model outputs and the corresponding actual 
values for a particular data set (i.e. the training 

set).  Therefore, the purpose of ANNs is to non-
linearly interpolate (generalise) in high-
dimensional space between the data used for cali-
bration.  ANNs have been shown to outperform 
more traditional statistical methods as they are 
universal function approximators (Hornik et al. 
1989).  However, one of the difficulties in using 
ANN models is that the potential number of free 
model parameters (i.e. connection weights) is gen-
erally large compared with that used in traditional 
statistical models and there is, therefore, a danger 
of overfitting the training data.  In other words, if 
the number of degrees of freedom of the model is 
large compared with the number of data points 
used for training, the model might no longer fit the 
general trend, as desired, but might learn the idio-
syncrasies of the particular data points used for 
training.  In general, one of two methods is used to 
overcome this problem.  The first is to restrict the 
ratio of the number of connection weights to the 
number of data points in the training set, and sev-
eral rules-of-thumb have been developed as a 
guide.  For example, Rogers and Dowla (1994) 
suggest that the number of weights should not ex-
ceed the number of training samples and Masters 
(1993) suggests that the ratio of the number of 
training samples to the number of connection 
weights should be 2 to 1.  The second approach to 
avoiding overfitting is to use the cross-validation 
method (Stone 1974), in which training is stopped 
early once the error associated with an independent 
test set starts to increase.  Generally, cross-
validation is considered to be the most effective 
method to ensure overfitting does not occur (Smith 
1993).   
 
When cross-validation is used as the stopping cri-
terion, three data sets are needed; a training set, a 
testing set and a validation set.  The training set is 
used to adjust the connection weights, the testing 
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set is used to decide when to stop training to avoid 
overfitting and the validation set is used to assess 
the generalisation ability of the model within the 
range of the data used for training.  If the trained 
model performs well on the validation set, the 
model is generally considered robust and ready for 
use as a predictive tool.  However, this is not nec-
essarily the case.  The objectives of this paper are: 
(i) to demonstrate that good performance on sepa-
rate training, testing and validation sets does not 
guarantee that a model will perform in a robust 
fashion over the range of data used for training; 
and (ii) to introduce a procedure of model valida-
tion that tests the robustness of the predictive abil-
ity of ANN models.  The abovementioned objec-
tives are investigated in this work through a case 
study of settlement prediction of shallow founda-
tions on granular soils, as will be described below. 
 
2 CASE STUDY 
 
In order to meet the objectives set out above, feed-
forward ANNs trained with the back-propagation 
algorithm (Rumelhart et al. 1986) are applied to a 
case study of settlement prediction of shallow 
foundations on granular soils.  Settlement of shal-
low foundations on granular soils occurs with load 
application during, or immediately after, the con-
struction period of a structure and is primarily due 
to the reorientation and distortion of soil grains.  
Settlement of shallow foundations on granular 
soils usually causes relatively rapid deformations 
of superstructures, which results in an inability to 
remedy damage and to avoid further deformation.  
As a consequence, settlement is a major concern 
and is an essential criterion in the design process 
of shallow foundations on granular soils.   
 
3 DEVELOPMENT OF ANN MODELS 
 
The PC-based software package NeuralWorks 
Predict Release 2.1 (NeuralWare 1997) is used to 
simulate artificial neural network operation.  The 
first step in the development of ANN models is the 
determination of appropriate model inputs and 
outputs.  It is generally accepted that five parame-
ters have the most significant impact on the set-
tlement of shallow foundations on granular soils 
(Burland and Burbidge 1985) and are thus used as 
the ANN model inputs.  These include the footing 
width, B; footing net applied pressure, q; soil com-
pressibility, which can be represented by the aver-
age blow count, N, obtained using the standard 
penetration test (SPT) over the depth of influence 
of the foundation, footing geometry, L/B; and foot-
ing embedment ratio, Df /B.  The single model out-
put is foundation settlement, Sm. 
 

The next step in the development of ANN models 
is dividing the available data into their subsets.  
The data used to calibrate and validate the neural 
network models are obtained from the literature 
and comprise a total of 189 individual cases 
(Shahin et al. 2002) that include field measure-
ments of settlement of shallow foundations, as 
well as the corresponding information regarding 
footings and soils.  As cross-validation (Stone 
1974) is used as the stopping criterion in this 
study, the data are randomly divided into three 
sets: training, testing and validation.  When divid-
ing the data into their subsets, it is essential to 
check that the data used for training, testing and 
validation represent the same statistical population 
(Masters 1993).  This is done by trying several 
random combinations of training, testing and vali-
dation sets until three statistically consistent data 
sets are obtained.  The statistical parameters con-
sidered are the mean, standard deviation, mini-
mum, maximum and range.  In total, 80% of the 
data are used for training and 20% are used for 
validation.  The training data are further divided 
into 70% for the training set and 30% for the test-
ing set.  Once the available data have been divided 
into their subsets, the input and output variables 
are pre-processed by scaling them to eliminate 
their dimension and to ensure that all variables re-
ceive equal attention during training.  Scaling has 
to be commensurate with the limits of the transfer 
functions used in the hidden and output layers (e.g. 
–1.0 to 1.0 for the tanh transfer function and 0.0 to 
1.0 for the sigmoid transfer function).   
 
One of the most important and difficult tasks in the 
development of ANN models is determining the 
model geometry.  In NeuralWorks Predict, the op-
timal network geometry (i.e. the number and con-
nectivity of the hidden layer nodes) is found with 
the aid of Cascade learning (Fahlman and Lebiere 
1990).  Cascade learning is an automatic construc-
tive algorithm in which hidden layer nodes are 
added as training progresses until there is no fur-
ther improvement in model performance.  This is 
designed to result in the smallest network that can 
adequately map the design input-output relation-
ship.  Cascade learning can be characterised by the 
ollowing steps (NeuralWare 1997): f

 
• Initially, the network is trained without hidden 

nodes and with direct connection between the 
input and output layers; 

• Hidden nodes are added randomly one or a 
few at a time; 

• New hidden nodes have connections from 
both the input layer and previously established 
hidden nodes; and 

• Construction is stopped when performance on 
the testing set shows no further improvement. 

80



The process of optimising the connection weights 
is applied using the default parameters of the soft-
ware package.  Use of the default parameters is 
considered reasonable since the focus of this study 
is on the evaluation of the robustness of ANN 
models rather than studying the impact of varying 
the networks parameters.  Details of the default pa-
rameters are discussed in NeuralWare (1997) and 
re as follows:  a

 
• Learning rule: Adaptive gradient learning rule; 
• Learning rate: 100 for the hidden layer and 

0.01 for the output layer; 
• Transfer function for the hidden layer: Tanh 

transfer function; and 
• Transfer function for output layer: Sigmoid 

transfer function. 
 
Using the above method, two neural networks, 
each with 2 hidden layer nodes, are found to per-
form best.  The structure of the models developed 
is shown in Figure 1 and their performance is 
summarised in Table 1, which includes three dif-
ferent measures of ANN model performance; the 
coefficient of correlation, r; the root mean square 
error, RMSE; and the mean absolute error, MAE.  
The coefficient of correlation, r, determines the 
goodness-of-fit between the predicted and ob-
served data.  The RMSE has the advantage that 
large errors receive much greater attention than 
small errors.  In contrast, MAE eliminates the em-
phases given to large errors. It can be seen from 
Table 1 that the two models have similar perform-
ance and their predictive ability with regard to the 
validation set is generally consistent with those of 
the training and validation sets, indicating that 
both models are able to generalise within the range 
of the data used for training.  These results indicate 
that the two models can be used as practical tools 
for predictive purposes and suggest that Model 2 
might slightly outperform Model 1.  It should be 
noted that the two models are developed using the 
same model parameters, except that they are opti-
mised with different sets of random starting 
weights.   
 
In order to confirm the robustness of the generali-
sation ability of the models obtained over the range 
of the data used for training, an additional valida-
tion approach is proposed.  The approach consists 
of carrying out a sensitivity analysis as part of 
which the response of the ANN model output to 
changes in its inputs is investigated.  Similar ap-
proach for carrying out parametric studies to 
evaluate the effects of various ANN model inputs 
on the corresponding outputs was used by Goh 
(1995).  All input variables, except one, are fixed 
to the mean values used for training and a set of 
synthetic data (between the minimum and maxi-

mum values used for model training), are gener-
ated for the input that is not set to a fixed value.  
The synthetic data are generated by increasing 
their values in increments equal to 5% of the total 
range between the minimum and maximum values.  
The response of the model is then examined.  This 
process is repeated using another input variable 
and so on until the model response is tested for all 
input variables.  The robustness of the model can 
be determined by examining how well the pre-
dicted settlements are in agreement with the 
known underlying physical processes over the 
range of inputs examined.  The above approach is 
deemed to complement the approach that is gener-
ally used in the literature for model robustness and 
generalisation (i.e. testing the performance of 
trained model on an independent validation set).  

 
Figure 1. Structure of the ANN models 
 
Table 1. Performance of the ANN models  

Model 

No. 

Data set  r RMSE 

(mm) 

MAE 

(mm) 

Training 0.92 10.8 7.4 

Testing 0.94 8.4 5.8 

1 

 

 Validation 0.88 12.9 9.8 

Training 0.94 9.1 6.3 

Testing 0.94 9.1 6.8 

2 

Validation 0.89 11.8 9.6 

 
4 RESULTS AND DISCUSSION 
 
The sensitivity analysis approach proposed above 
for testing ANN model robustness is applied to the 
two models developed in this study (i.e. Models 1 
and 2) and the results are shown in Figure 2.  It can 
be seen that the results obtained for Model 1 are in 
agreement with what one would expect based on 
the known physical behaviour of settlement of 
shallow foundations on granular soils.  For exam-
ple, in Figures 2(a), (b) and (d), there is an increase 
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Figure 2. Results of the sensitivity analysis to test the robustness of the ANN models  
 
in the predicted settlement, in a relatively consis-
tent and smooth fashion, as footing width, footing 
net applied pressure and footing geometry, re-
spectively, increase.  On the other hand, in Fig-
ures 2(c) and (e), the predicted settlement de-
creases, also in a consistent and smooth fashion, 
as the average SPT blow count and footing em-
bedment ratio, respectively, increase.  In contrast, 
it can be seen from Figure 2 that the curves ob-
tained for Model 2 have an unexpected shape that 
is difficult to justify from a physical understand-
ing of footing settlement.  For example, there are 
abrupt changes in predicted settlement in some in-
stances and no change in predicted settlement for 
a range of inputs in others.  However, as both 
models gave similar performance on the training, 
testing and validation sets (Table 1), one would 

expect the models to behave in a similar manner 
when presented with a range of inputs, as was 
done during the sensitivity analysis.  The above 
results indicate that there appears to be some kind 
of overfitting for Model 2, however, as mentioned 
previously, cross-validation was adopted in this 
work, which is considered to be the most valuable 
tool to ensure overfitting does not occur (Smith 
1993).  In addition, an independent validation set 
was used to test the predictive ability of Model 2 
and the model was found to perform well (see Ta-
ble 1).  It appears that the actual values of the 
connection weights are the only possible reason 
for the different behaviour exhibited by Models 1 
and 2 over the range of the data used during the 
sensitivity analysis, as this is the only difference 
in model parameters between the two models, as 
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mentioned previously.  Consequently, the actual 
connection weights (including biases) of the two 
models are examined as part of this study and are 
shown in Figure 3.  Examining connection 
weights for interpreting ANN model behaviour 
was proposed by Garson (1991).  It can be seen 
that the values of the weights obtained for Model 
1 are more consistent than those of Model 2.  
Some values of the weights obtained for Model 2 
are significantly larger than the others, which can 
often indicate a problem with the model (Bailey 
and Thompson 1990), and result in erratic behav-
ior.  The large values of the weights of Model 2 
generally cause the node activations to be large, 
and as a result, the nodal outputs can become 
trapped in the flat spots at the extreme values of 
the transfer functions used in the hidden and out-
put layers of Model 2.          
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Figure 3. Bar charts of the weights obtained for 
the ANN models  
 
5 CONCLUSIONS 
 
Based on the results of this study, it is concluded 
that good performance of ANN models on train-
ing, testing and validation sets does not guarantee 
the robustness of the predictive ability of ANN 
models over a range of data similar to that used 
for model training.  It is recommended that the 
following procedure for testing ANN model ro-
bustness be used routinely as part of ANN model 

evelopment.   d
 
1. The performance of an ANN model should 

be tested on an independent validation set, 
the statistical properties of which should be 
consistent with those of the training and vali-
dation sets (this is the method that is com-
monly used in the literature for testing ANN 
model robustness); 

2. The connection weights obtained should be 
checked for any inconsistency (e.g. whether 
some weights are large compared with other 
weights in the network); and  

3. A sensitivity analysis, similar to the one pro-
posed in this study, should be carried out to 
ensure that the model can be used for predic-
tive purposes with confidence.  
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