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EXTENDED ABSTRACT 

Recent technological advances, such as powerful 
computers, remote sensors, geographic information 
systems and worldwide networking facilities, have 
brought hydrologic research to a whole new level. 
They have facilitated extensive data collection, 
better data sharing, formulation of sophisticated 
methods, and development of complex models to 
mimic real hydrologic systems. Despite these 
obvious advances, there are serious concerns about 
their use in practice and criticisms about our 
approach to hydrologic modeling. For example: (1) 
these developments naturally lead to more 
complex models (having too many parameters 
requiring too much data) than that may actually be 
needed; (2) to satisfy the data requirements for 
such models, we are certainly collecting more and 
more data, but this does not mean that we are 
collecting all the relevant data; (3) so, despite their 
complexity, these models do not perform 
sufficiently well, even for the situations they are 
developed for; and (4) since the models are often 
developed for specific situations, ‘translation’ of 
the results to other situations is difficult. 

Recent studies have addressed these concerns and 
criticisms, albeit in different forms, such as 
dominant processes, thresholds, model integration, 
and model simplification. A common aspect in 
these studies is that they recognize the need for a 
“classification system” in hydrology, so that an 
appropriate identification as to the model (type) 
and data requirements can be made. The studies 
also recognize that, in order to be of general use, 
such a framework must be: (1) able to provide 
guidelines for streamlining hydrologic complexity 
into classes and sub-classes, as appropriate, based 
on the general/specific information available; and 
(2) simple enough and commonly agreeable, so 
that it could provide a “universal” language for 
communications and discussions in hydrology. 
They opine that perhaps the identification of 
dominant governing processes may help in the 
formation of such a classification system. 

The present study explores one potential way to 
advance this classification system. The exploration 

involves use of a simple phase-space data 
reconstruction technique to identify the 
‘complexity’ of hydrologic systems (defined 
especially in the context of dimensionality of 
relevant time series). The reconstruction involves 
representation of the given multi- (often large-) 
dimensional hydrologic system using only an 
available (representative) single-variable data 
series through a delay coordinate embedding 
procedure. The ‘extent of complexity’ of the 
system is identified by the ‘region of attraction of 
trajectories’ in the phase-space, which is then used 
to classify the system as potentially low-, medium- 
or high-dimensional. 

The investigation is carried out in two steps: First, 
the use of the phase-space concept for system 
complexity and classification is demonstrated on 
two artificially generated time series, whose 
characteristics are known a priori: a high-
dimensional purely random series and a low-
dimensional deterministic chaotic series. Then, 
phase-spaces are reconstructed for a host of river 
flow time series, representing different geographic 
regions, climatic conditions, river sizes and 
complexities, and scales. Two specific cases are 
discussed herein: (1) daily river flow data from 
different locations; and (2) river flow data of 
different scales from the same location.  

The results for the two artificial time series reveals 
that direct time series plots and other widely used 
linear statistical tools (such as autocorrelation 
function and power spectrum) may not be adequate 
for studying system complexity and classification. 
This may be attributed to the inability of these 
tools to represent the nonlinear properties of the 
deterministic chaotic series (an inherent property 
of hydrologic data). The river flow series yield 
‘attractors’ that range from ‘very clear’ ones to 
‘moderately clear’ to ‘very blurry’ ones depending 
on data, indicating the usefulness of this simple 
phase-space reconstruction concept for studying 
hydrologic system complexity and classification. 
The results also reveal the ability of the phase-
space to reflect the river basin characteristics and 
the associated mechanisms, such as basin size, 
smoothing, and scaling. 
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1. INTRODUCTION 
 
Hydrologic science has seen an enormous growth, 
thanks to technological advances that have 
facilitated collection of extensive data and 
development of complex models. While continued 
technological/methodological developments are 
needed for a more complete understanding, true 
progress can be evaluated only through a balanced 
assessment of both positive and negative aspects of 
these developments. However, encouraged by their 
positive aspects, we have a tendency to excessively 
use these technologies and, in the process, to 
potentially overlook their limitations. For example, 
there are concerns that: (1) these developments 
naturally lead to more complex models than that 
may actually be needed; and (2) the models are 
often developed for specific situations, making 
generalization difficult. There are also criticisms 
that: (1) we may not be collecting all the relevant 
data, though collecting more data; and (2) the 
models do not perform sufficiently well, even for 
the situations they are developed for. 
 
The idea of model simplification is central in many 
studies, albeit in different forms (e.g. Jakeman and 
Hornberger, 1993; Grayson and Blöschl, 2000; 
Sivakumar, 2000); a particularly interesting 
observation is made by Grayson and Blöschl 
(2000), who view model simplification and data 
collection through the prism of “dominant 
processes.” While these studies largely emphasize 
the possible simplicity in the “apparent” 
complexity of hydrologic systems, the fact that 
there also exists “actual” complexity needs careful 
consideration. Consequently, there is a need for 
devising a framework that could help in 
determining the extent of complexity in hydrologic 
systems, so that an appropriate identification as to 
the model and data requirements may be made. 
Such a framework must be able to provide 
guidelines for streamlining hydrologic complexity 
into classes and sub-classes, as appropriate, based 
on the general/specific information available. The 
framework must also be simple and commonly 
agreeable, so that it could provide a “universal” 
language for communications and discussions. 
 
Recent studies raise an increasing concern on the 
absence of such a framework or a classification 
system (e.g. McDonnell and Woods, 2004). Such 
studies suggest that perhaps simplification in data 
collection and modeling may happen through 
identification of dominant governing processes and 
may help in the formation of a classification 
system. Towards this end, Sivakumar (2004) 
introduces a classification system based on 
‘dimensionality’ of hydrologic systems (i.e. time 
series), representing the (number of) dominant 

processes. The present study explores one potential 
way to advance this classification using a simple 
phase-space data reconstruction technique. The 
basic idea behind this reconstruction is as follows: 
As a complex looking outcome can also be the 
result of a simple system with a few dominant 
nonlinear interdependent variables (e.g. Henon, 
1976), direct time series plots and linear statistical 
tools may not be sufficient to identify system 
complexity. Consequently, one may need to 
represent the evolution of the system in the form of 
“trajectories” through reconstruction of the 
available (often single-variable) data in a multi-
dimensional space, so that the “region” of these 
trajectories (attractor) in the phase-space may be 
used to obtain useful qualitative information on the 
extent of complexity of the system dynamics, and 
may eventually lead to system classification. 
 
With this idea, the potential use of phase-space 
reconstruction to the study of system complexity 
(i.e. dimensionality of time series) and 
classification is investigated in two steps: First, its 
use is demonstrated on two artificially generated 
time series, whose characteristics are known a 
priori: a high-dimensional purely random series 
and a low-dimensional deterministic chaotic series. 
Then, phase-spaces are reconstructed for a host of 
river flow data (representing different conditions 
and scales) and are interpreted for the underlying 
system’s complexity and classification. 
 
2. DATA RECONSTRUCTION AND 

SYSTEM CLASSIFICATION 
 
In the “data reconstruction” context, a useful tool 
for “embedding” the data to represent the system’s 
evolution is the concept of phase-space (e.g. 
Takens, 1981). Phase-space is essentially a graph, 
whose coordinates represent the variables 
necessary to describe the state of the system at any 
moment. The trajectories of the phase-space 
diagram describe the evolution of the system from 
some initial state, and hence represent the history 
of the system. Phase-space can be reconstructed 
based on a single- (or multi-) variable series. The 
idea behind this concept is that a (nonlinear) 
system is characterized by self-interactions, and 
that data series of a single variable carries 
sufficient information about the entire system. 
Among the methods available for phase-space 
reconstruction, the method of delays (e.g. Takens, 
1981) is the most widely used one. According to 
this method, with an available single-variable 
series, Xi, where i = 1, 2, ..., N, a multi-dimensional 
phase-space can be reconstructed as: 

Yj = (Xj, Xj+τ, Xj+2τ, ..., Xj+(m-1) τ)   (1) 
where j = 1, 2, ..., N-(m-1)τ; m is the (embedding) 
dimension of the vector Yj; and τ is an appropriate 
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delay time. A correct phase-space reconstruction in 
m allows interpretation of the system dynamics in 
the form of an m-dimensional map fT, given by: 

Yj+T = fT(Yj)    (2) 
where Yj and Yj+T are vectors of dimension m, 
describing the state of the system at times j 
(current state) and j+T (future state), respectively. 
 
The utility of phase-space reconstruction for  
system “classification” can be realized from the 
extent of simplicity/complexity revealed by the 
phase diagram in the form of the “attractor.” For 
instance, if the attractor is ‘clear’ (lying on a 
narrow region), then the dynamics are considered  
‘simple’ and the system low-dimensional. If the 
attractor is ‘blurry’ (scattered over a large region), 
then the dynamics are treated as ‘complex’ and the 
system high-dimensional. If the attractor falls 
somewhere between these two, then the dynamics 
are assumed to be of ‘intermediate complexity’ 
and the system medium-dimensional. If not a 
convincing ‘simple’ vs. ‘complex’ system 
classification, the reconstruction shows at least the 
extent of variability within a time series (or 
difference between two), which is often not 
possible based on time series plots and linear tools. 
 
To demonstrate the utility of phase-space 
reconstruction, two ‘complex’ data sets are 
artificially generated and studied. Figure 1(a) and 
(b) presents samples of their variations. It is clear 
that both exhibit significant variations, with no 
apparent structure, i.e. both look ‘random’ and 
almost indistinguishable. However, the underlying 
systems (equations) that produce these two sets 
significantly differ from each other. The first set 
[Figure 1(a)] is the outcome of a pseudo random 
number generation function: 

Xi = rand( ),    (3) 
which yields independent and identically 
distributed (IID) numbers. The second [Figure 
1(b)], however, is the outcome of a fully 
deterministic simple two-dimensional map 
(Henon, 1976): 

Xi+1 = a – Xi
2 + bYi; Yi+1 = Xi,   (4) 

which yields irregular solutions for many choices 
of a and b, but for a = 1.4 and b = 0.3, a typical 
sequence of Xi is chaotic. 
 
The time series plots are not the only ones that fail 
to distinguish between the two sets; even the 
widely used linear tools, such as autocorrelation 
functions [Figure 1(c) and (d)] and power spectra 
[Figure 1(e) and (f)] fail as well. This failure is not 
just in ‘visual’ or ‘qualitative’ terms, but also in 
quantitative terms: for instance, for both sets, the 
time lag at which the autocorrelation function first 
crosses the zero line is equal to 1 and the spectral 
exponent is equal to 0 (indicating randomness in 

the dynamics of both). It is clear that these linear 
tools are not sufficient for studies on system 
complexity, especially when the system possesses 
nonlinear properties. Consequently, one may need 
tools that can also represent nonlinear properties. 
In view of this, these data sets are represented via 
phase-space reconstruction, and are shown in 
Figure 1(g) and (h). The phase-space diagrams 
correspond to reconstruction in two dimensions (m 
= 2) with delay time τ = 1, i.e. the projection of the 
attractor on the plane {Xi, Xi+1}. For the first set, 
the points (of trajectories) are scattered all over the 
phase-space (i.e. absence of an attractor), a clear 
indication of a ‘complex’ and ‘random’ nature of 
the underlying dynamics and potentially of a high-
dimensional system. On the other hand, the 
projection for the second set yields a very clear 
attractor (in a well-defined region), indicating a 
‘simple’ and ‘deterministic’ nature of the dynamics 
and potentially of a low-dimensional system. 
These observations present testimony to the utility 
of the phase-space reconstruction concept for 
studying and classifying ‘complex’ systems. 
 
3. HYDROLOGIC SYSTEMS, 

COMPLEXITY AND CLASSIFICATION 
 
The utility of phase-space reconstruction is now 
tested on river flow data. The analysis is presented 
under two sub-sections, which correspond to: (1) 
daily river flow data from different locations; and 
(2) river flow data at different scales from the 
same location. Due to space limitations, details of 
these data sets are not reported herein, but relevant 
references are cited. Also, for brevity, the 
presentation and interpretation are made only 
based on time series and phase-space plots. 
Finally, to facilitate better visualization and 
comparison, each time series is normalized with 
respect to its maximum value, so that the data 
values range between 0 and 1 in all cases. 
 
3.1. Daily Flow: Different Locations 
 
As representations for this case, four flow series, 
one each from four rivers, are considered: (a) Chao 
Phraya River in Thailand (Global River Flow Data 
Center station #2964100); (b) Mississippi River 
(USGS station #07010000); (c) Kentucky River 
(USGS station #03284000); and (d) Stillaguamish 
River in Washington state (USGS station 
#12167000). These vary in climatic conditions and 
basin characteristics. For details, see Sivakumar et 
al. (2002) for Chao Phraya River, Sivakumar et al. 
(2004) for Mississippi River and Regonda et al. 
(2004) for Kentucky and Stillaguamish Rivers. 
Figure 2(a) to (d) shows time series plots of these 
four series. Except for some noticeable ‘peaks’ and 
‘dips,’ these series generally show no clear 
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‘pattern’ in their ‘evolution.’ In short, from a 
‘visual inspection’ at least, all four series are 
complex and irregular, suggesting that the 

underlying dynamics are random. The data are 
indistinguishable from a ‘complexity’ perspective 
and ‘classification’ does not seem possible. 
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Figure 1.  Comparison Between Random and Deterministic Chaotic Sytems: (a) and (b) Time Series; (c) and 
(d) Autocorrelation Function; (e) and (f) Power Spectrum; and (g) and (f) Phase-space Diagram  
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Figure 2. Time Series Plots and Phase-Space Diagrams for Daily River Flow Series: (a) and (e) Chao Phraya 
River; (b) and (f) Mississippi River; (c) and (g) Kentucky River; and (d) and (h) Stillaguamish River
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Figure 3. Time Series Plots and Phase-Space Diagrams for Mississippi River Flow at Different Temporal 
Scales: (a) and (d) 2-day; (b) and (e) 8-day; and (c) and (f) 16-day [see Figure 2(b) and (f) for daily data]  
 
Figure 2(e) to (h) shows phase-space  
reconstructions of the four series [the points are 
connected for better visualization of ‘evolution’]. 
The differences in the flow dynamics among the 
four  systems are clear. The phase-space diagram 
for the Chao Phraya River flow exhibits a very 
clear attractor (flow always evolving within a 
very well defined ‘boundary’), suggesting that the 
dynamics are simple and predictable and, hence, 
the system is potentially low-dimensional. The 
Mississippi River flow series also exhibits a clear 
attractor in a well-defined region, suggesting 
possibly simple and predictable dynamics. While 
the system may be classified as potentially low-
dimensional in par with the Chao Phraya River 
system, the flow dynamics certainly look more 
complex. The phase-space diagrams for flow 

from the Kentucky River and the Stillaguamish 
River show increasing order of complexity. 
Clearly, the Stillaguamish River flow series, for 
which points of trajectories are scattered almost 
all over the phase-space, is highly complex and 
irregular, suggesting random and unpredictable 
behavior, and a potentially high-dimensional 
system. For the Kentucky River flow series, a 
reasonably clear attractor is still present, though 
not as clear as that for Chao Phraya River and 
Mississippi River. Looking at this particular 
attractor individually, one may interpret that the 
dynamics fall somewhere between simple and 
very complex behaviors. Looking at it 
collectively with the others, one may infer that the 
dynamics are of intermediate complexity, and the 
system is potentially medium-dimensional. 
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3.2. Flow at Different Scales 
 
As river flow at different scales may exhibit 
different levels of complexity, the utility of phase-
space is also studied herein in the context of scale. 
The analysis is limited only to temporal scale. 
Flow data corresponding to five different scales 
from the Mississippi River are considered [same 
station considered for the daily flow analysis]. 
These scales range from daily to 16 days at 
successively doubled resolutions (i.e. daily, 2-
day, 4-day, 8-day, and 16-day) [see Sivakumar et 
al. (2004) for details]. Figure 3(a) to (c) shows the 
time series plots of the 2-day, 8-day, and 16-day 
flow series, respectively; also see Figure 2(b) for 
daily series [4-day series not shown for space 
limitations]. All of these plots show ‘peaks’ and 
‘dips’, but they do not seem to indicate any clear 
pattern. While a closer look at these plots indeed 
reveals certain amount of ‘smoothing effect’ with 
temporal aggregation of data, which increases 
with increasing scale, no obvious pattern that 
would allow determination of the extent of 
complexity seems to be present. It may, therefore, 
be reasonable to say that all of these data sets look 
just complex and irregular, implying that the 
underlying dynamics may be random, 
unpredictable and indistinguishable. 
 
The phase-space reconstructions of these series 
are shown in Figure 3(d) to (f), respectively; also 
see Figure 2(f) for daily series. As mentioned 
above, the daily series exhibits a clear attractor in 
a well-defined region in the phase-space. As for 
the remaining series, all of them exhibit 
reasonably clear attractors as well, suggesting 
simple and predictable flow dynamics at each of 
(or across) these scales; however, the region of 
attraction increases in order with increasing scale 
of aggregation, with the attractor for the 16-day 
series being the ‘most scattered’ among all. 
Overall, it is reasonable to interpret that the flow 
dynamics between daily and biweekly scales are 
simple (may be, approaching intermediate 
complexity at the biweekly scale). This may be an 
indication that the systems producing these flows 
are potentially low-dimensional, or medium-
dimensional at worst, at the scale that exhibits the 
highest complexity. These results also present an 
interesting observation: that is, increasing scale of 
temporal aggregation, from finer to coarser, may 
result in increasing level of complexity in the 
dynamics (e.g. Sivakumar et al., 2004). 

4. CLOSING REMARKS 

This study explored the utility of a simple 
nonlinear phase-space data reconstruction 
approach for studying hydrologic system 
complexity (defined by the dimensionality of 

relevant time series) and classification.  The 
approach was first demonstrated on two artificial 
time series, and then tested on a host of river flow 
series, representing different flow conditions and 
temporal scales. The results for the artificial series 
revealed the superiority of this approach over 
direct time series plots and linear statistical tools 
for system complexity and classification. On the 
basis of the extent of ‘region of attraction’ of 
trajectories in the phase-space, the hydrologic 
data sets were identified to exhibit ‘simple’ or 
‘intermediate’ or ‘complex’ behaviors and, 
correspondingly, the ‘systems’ were classified as 
low- or medium- or high-dimensional. Efforts to  
advance this classification framework are 
underway. These include: use of  other 
‘invariants’ for verification; and linking the 
‘dimensions’ with the actual physical processes. 
 
5. REFERENCES 
Grayson, R.B., and G. Blöschl (2000), Spatial 

Patterns in Catchment Hydrology: 
Observations and Modeling (ed.), Cambridge 
University Press, Cambridge, UK. 

Henon, M. (1976), A two-dimensional mapping 
with a strange attractor, Communications in 
Mathematical Physics, 50, 69-77. 

Jakeman, A.J., and G.M. Hornberger (1993), How 
much complexity is warranted in a rainfall-
runoff model?, Water Resources Research, 
29(8), 2637-2650. 

McDonnell, J.J., and R. Woods (2004), On the 
need for catchment classification, Journal of 
Hydrology, 299, 2-3. 

Regonda, S., B. Sivakumar, and A. Jain (2004), 
Temporal scaling in river flow: Can it be 
chaotic?, Hydrological Sciences Journal, 
49(3), 373-385. 

Sivakumar, B. (2000), Chaos theory in hydrology: 
important issues and interpretations, Journal 
of Hydrology, 227(1-4), 1-20. 

Sivakumar, B. (2004), Dominant processes 
concept in hydrology: moving forward, 
Hydrological Processes, 18(12), 2349-2353. 

Sivakumar, B., A.W. Jayawardena, and T.M.K.G. 
Fernando (2002), River flow forecasting: use 
of phase-space reconstruction and artificial 
neural networks approaches, Journal of 
Hydrology, 265(1-4), 225-245. 

Sivakumar, B., W.W. Wallender, C.E. Puente, 
and  M.N. Islam (2004). Streamflow 
disaggregation: A nonlinear deterministic 
approach, Nonlinear Processes in 
Geophysics, 11, 383-392. 

Takens, F. (1981), Detecting strange attractors in 
turbulence, In: Dynamical Systems and 
Turbulence, Rand, D.A, and L.S. Young 
(eds.), Lecture Notes in Mathematics 898, 
Springer-Verlag, Berlin, Germany, 366-381. 

1907


