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EXTENDED ABSTRACT 

Concepts of health are often multivariate or 
multidimensional. Structural equation modelling 
(SEM) is a multivariate method that incorporates 
ideas from regression, path-analysis and factor 
analysis. A Bayesian approach to SEM may enable 
models that reflect hypotheses based on complex 
theory. The development and application of 
Bayesian approaches to SEM has, however, been 
relatively slow but with modern technology and 
the Gibbs sampler, is now possible. This paper 
contributes to the knowledge of Bayesian methods 
in the SEM framework by illustrating how 
different sources of uncertainty in data can be 
incorporated into the modelling process. The 
particular aim is to develop a preliminary Bayesian 
approach to SEM for the longitudinal relationship 
between life events and health, which is extended 
to account for the suspected effect of telescoping. 
Telescoping is a tendency to recall events from the 
past as having happened more recently than when 
they actually occurred, and is suspected to have 
occurred due to the time recall component of some 
questions. It is expected that this basic model be 
extended to include other issues as required.  

A preliminary Bayesian approach to SEM is 
initially considered that is posed independent of 
data characteristics. A model with uninformative 
priors, in the form of very large variances on prior 
distributions, is adopted. Given the inadequate 
convergence of this model, an approach that 
accounts for data characteristics is proposed. This 
latter approach takes three forms. Data is first 
centred as it is believed this may improve 
convergence. The same uninformative priors as 
previously are adopted with initial values 
randomly sampled from priors. Convergence 
though remained poor with variables 
demonstrating poor mixing and long-term trend.  

An informed model is then proposed whereby the 
observed variables are centred around zero and 
scaled to a standard deviation of one. Informative 
priors on the parameters of interest are adopted, 

with means taken from an exploratory data 
analysis with tighter but still strongly 
overdispersed variances. Priors that were 
moderately informed with strongly overdispersed 
variances produced more stable results than 
alternative less informative priors. The importance 
of carefully choosing priors that allow the Markov 
Chain Monte Carlo (MCMC) algorithm to start in 
a region of high posterior probability is illustrated.  

There is still concern that the algorithm fails to 
explore the entire space and may identify only a 
local mode and starting the algorithm from 
positions far away from this region of high 
probability did not lead to strong confirmation of 
other joint posterior modes. Further evaluation of 
this concern was undertaken by simulating data 
with a much stronger signal than in the dataset 
considered here. Much better mixing of all 
variables was observed and convergence was 
obtained in a much shorter number of iterations. 
The strong priors imposed in the model indeed 
enabled the algorithm to start in a region of high 
probability but did not constrain it to staying in 
that exact region.  

The Bayesian framework additionally has the 
ability to model particular features of the data. 
Given the a priori anticipation that subjects would 
experience approximately the same number of life 
events in the two time periods considered, an 
investigation of this possible measurement error 
bias was undertaken by constructing an additive 
model. This application illustrates the ease with 
which the Bayesian hierarchical model can 
accommodate features such as measurement error.  

Considerable issues in applications of repeated 
sampling remain relatively unexplored. As 
demonstrated here, the Bayesian framework 
provides a flexible coherent way of doing this. 
Further research remains into the best 
interpretation of coefficients and their posterior 
distributions under the Bayesian framework. These 
are general Bayesian problems of current 
international interest.  
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1. INTRODUCTION 

It is common for notions of health and behaviour 
to be multidimensional. However univariate 
analysis of correlated outcomes remains the 
dominant form of analysis in the health sciences, 
which may result in distorted estimates of effect 
and variation. Structural equation modelling 
(SEM) incorporates ideas from regression, path-
analysis and factor analysis. SEM allows the 
original predictors and outcomes to be summarised 
by their underlying latents while also accounting 
for the anticipated causal relationships between the 
latents. SEM also allows exploration of 
relationships using longitudinal data, which can 
take the form of repeated measures data.  

It is postulated that a Bayesian approach to SEM 
may enable models that are easy to interpret and 
supported by data, while also portraying research 
hypotheses based on complex theories. Although 
Bayesian modelling has been adopted vigorously 
in the health research community, and despite 
some long-standing Bayesian discussion of certain 
aspects of factor analysis and SEM in the classical 
framework [eg Lee 1981; Press and Shigemasu, 
1989], the development and application of 
Bayesian approaches to SEM has been relatively 
slow.  

Congdon (Chapter 8) identifies some advantages 
of the Bayesian approach, including linking 
structural equation concepts to multi-level 
hierarchical models [Ansari et al. 2001] and 
estimation of conventional unidentifiable models 
[Scheines et al. 1999]. Recent developments of 
computer intensive sampling methods of 
estimation have revolutionalised the application of 
Bayesian methods in many fields including 
biostatistics [Congdon 2001]. 

With modern computers and the Gibbs sampler, a 
Bayesian approach to SEM is now possible and 
hence posterior distributions over parameters of 
SEM can be approximated with arbitrary precision, 
even for small samples. Some of the possible 
advantages of Bayesian analyses in SEM 
applications are suggested by Scheines et al. 
[1999] and Lee [1992] in terms of changing formal 
constraints to permit stochastic uncertainty. Recent 
developments introducing SEM concepts into 
maximum likelihood analyses are discussed by 
Ansari et al. [2001], who include an application of 
Monte Carlo estimation. Following early work by 
Lee [1981, 1992] and Press and Shigamasu [1989], 
Bayesian formulations of structural equation 
models have been presented by Scheines et al. 
[1999], Ansari et al. [2001] and Song and Lee 
[2001]. This literature has been recently reviewed 

by Congdon [2003, Chapter 8] in the wider context 
of latent variable models.  

The present study aims to develop a basic 
Bayesian structural equation model which may be 
extended to similar problems by researchers. It is 
expected that this basic model be extended to 
include other issues as required.  
 
People in middle age commonly experience 
multiple transitions including changes in 
employment, children leaving home and illness or 
death of parents. The impact of common life 
events on health is not well known, in particular 
among middle aged Australian women. A previous 
study that assesses the temporal relationship 
between life events and health will form the basis 
for the present study. It is based on retrospective 
data collected at two points in time, 1996 and 
1998, for the mid age cohort of the Australian 
Longitudinal Study on Women’s Health (ALSWH) 
[Brown et al. 1998]. A description of the data used 
for the study that assesses the relationship between 
life events and health is described elsewhere in 
more detail [Stojanovski, 2005]. In summary, 
theory postulates that life events affect both 
physical and mental health [Wilcox et al. 
2003].and that mental health affects physical 
health [Ader et al. 1995]. The model depicting 
these relationships is displayed in Figure 1. This 
path diagram describes the causations among the 
latent variables in the model. The items used to 
represent each latent are not presented in the 
diagram but described elsewhere [Stojanovski, 
2005] in detail and briefly here. A list of age-group 
specific life events relevant to women in Australia 
in the 1990s were developed for the ALSWH 
project. In both the baseline and follow-up survey 
participants were asked if they had experienced 
each event in the last twelve months. Events were 
summed to create the total number of events 
experienced at each time point. Mental health in 
was measured by dimensions of the Short-Form 
Health Status survey (SF-36) [Ware et al. 1994], a 
widely used measure of health related quality of 
life and physical health by the physical health 
domains of SF-36 along with doctor visits, medical 
conditions, prescribed medications and physical 
symptoms. A composite score was created for the 
set of items comprising physical and mental health. 
 
The previous study by Stojanovski demonstrates 
that baseline health measures mediate the 
relationship between life events at baseline and the 
corresponding health measures at follow-up. The 
fully mediated model, whereby life events at 
baseline affect the health measures at follow-up 
only via their effect on health at baseline, is 
extended here using a Bayesian approach to 
illustrate the ease with which different prior 
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distributions can be incorporated. This enables a 
more informative portrayal of the relationships of 
interest. It is acknowledged that results from other 
studies can only be used as a guide in developing 
prior types as their characteristics do not match 
exactly those of the present study. Priors 
considered for this study will be centred on the 
evidence from these external studies and hence 
will be overdispersed. This is still much more 
informative than the typical uninformative or 
vague priors that are used to represent no prior 
information at all.  

Due to the time recall component of the life event 
items asked in the questionnaires, respondents are 
expected to make errors because of incorrect 
recollection of information. Some differences in 
the number of experienced life events were 
expected due to variations in exposure to some 
events in the twelve months prior to each survey 
but was not expected for most events. A bias in 
reporting the number of life events is evident with 
an increased incidence of reporting life events in 
1996 compared to the respective rates in 1998 
(Figure 2). A concern is that this bias is due to 

 
Figure 1. Structural Equation Model relating life 
events to health over time. 

the limited response categories for items from 
questionnaires related to life events at baseline 
which can have the effect of bringing events from 
the past to a more recent time in memory, a 
concept known as telescoping [Fowler 1988].  

2. METHODS 

A preliminary Bayesian approach to SEM is 
considered in Section 2.1. Given the inadequate 
MCMC convergence of this model, an approach 
that accounts for data characteristics is proposed in 

Section 2.2. A preliminary Bayesian approach to 
account for the suspected effect of telescoping is 
presented in Section 2.3.   

2.1 Description of Model 

A general Bayesian structural equation model is 
posed independent of data characteristics. The 
following notation is used throughout this paper.  
• Let Yj , j=1,..,4 be n-dimensional vectors 

representing the observed composite scores 
for the responses in the present study, namely 
mental health in 1996, mental health in 1998, 
physical health in 1996 and physical health in 
1998, respectively, where n is the number of 
subjects. Denote the corresponding 
endogenous latent variables by by θj, j=1,..,4.  

• Similarly, let Xj, j=1,2 be n-dimensional 
vectors representing observed composite  
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Figure 2. Graph Comparing the Number of life 
events reported in 1996 and 1998 

 
       scores for life events in 1996 and 1998,  
       respectively. Denote the corresponding  
       exogenous latent variables by θj , j=1,..,4.  
• Factor loadings are denoted by λYj, j=1,..,4, 

and λXj , j=1,2. Similarly, error precisions are 
denoted by 1/τYj, j=1,..,4, and 1/τXj , j=1,2.  
 

Based on earlier considerations, λY, λX, τX and τY 
are assumed known. In a more general setting, this 
assumption could be relaxed by imposing prior 
distributions on the loadings and precisions. For 
example, a Gamma distribution for λ with 
parameters chosen to allow centring at the 
assumed value with appropriate uncertainty could 
be imposed. Similarly, the precision could be 
represented by 1/(σ2W), where W is the estimated 
variance-covariance matrix and  

1/σ2~χν
2 / ν, 

where ν is the corresponding degrees of freedom. 
These alternatives are not pursued here, given the 
preliminary nature of the present analysis.  

The measurement model describing the  
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relationships between the observed variables Y and 
the latent health scores θ  are given by 

Yij ~ N(λYj θji, τYj) , i =1,..,n; j=1,..,4. 
 
Similarly, the measurement model describing the 
relationships between the observed variables X and 
the latent life events η are given by 

Xij ~ N(λXj ηji, τXj) , i =1,..,n; j=1,..,4. 

The Gaussian distributions adopted for Y and X 
reflect the nature of the composite scores used in 
this analysis. More robust distributions or 
nonparametric representations could easily be 
substituted in a more general setting, since the 
resultant non-standard posteriors can be readily 
estimated using MCMC [Besag et al. 1995; 
Congdon 2003]. The correlation induced by the 
repeated measurements at 1996 and 1998 is 
represented through the life event latent variables 
as follows 

η2i = δ η1i, i=1,..,n. 

A vague hyperprior is imposed on the link  δ, 
although as discussed later, a more informative 
prior can be constructed based on ancilliary 
information. 

Following Figure 1, the structural models 
become, for i=1,..,n 

θ1i = γ1 η1i 
θ2i = β1 θ1i + γ2 η1i + γ3 η2i 

θ3i = γ4 η1i 
θ4i = γ5 η1i + γ6 η2i + β3 θ3i . 

Finally, the following vague but proper hyper-
priors are introduced 

η1i ~ N(0,σ2), i=1,…,n 
δ ~ N(0,σ2) 

γj ~ N(0,σ2), j=1,..,4 
βj ~ N(0,σ2), j=1,2,. 

where the variance, σ2, is a common constant 
described in Section 2.2. 
 
Uninformative priors are adopted, in the form of 
very large variances (σ2=106) on prior distributions 
of δ, γ, β and initial values for MCMC analysis are 
randomly sampled from the priors. As shown in 
the results, convergence for this model was very 
poor, with many variables showing very little 
movement from their initial values and other 
variables showing definite non-stationarity over 
very long run lengths. The Bayesian model 
proposed here is general in that it does not account 
for characteristics of the data.  

2.2 Original, Centred and Informed Models 

Exploratory analysis of the data resulted in an  

evolution of more informed Bayesian models. A 
second model using centred data was considered in 
an attempt to improve convergence [Spiegelhalter 
et al. 2000]. Observed variables are centred around 
zero and scaled to a standard deviation of one. 
Uninformative priors are adopted as above 
(σ2=106) and initial values for MCMC analysis are 
randomly sampled from priors. Convergence was 
marginally improved but still remained 
unacceptably poor, with variables still 
demonstrating very poor mixing and long-term 
trend. These results are not presented. The priors 
used in the model were thus modified from 
(unrealistically) vague to moderately informed. 

For the informed model, observed variables are 
centred around zero and scaled to a standard 
deviation of one. Informative priors for 
δ, γ  and β are adopted, with means taken from an 
exploratory data analysis that was undertaken, and 
with tighter but still strongly overdispersed 
variances. The initial values for MCMC analysis 
are set at the prior means: γ=(3.84, 0.28, -0.061, 
4.10, 0.12, 0.011), δ = 0.52 and β = (0.93, 0.94). 
As shown in Section 3.2, this model that started 
the MCMC algorithm in a zone of high probability 
produced much more stable results in that it 
allowed much better mixing and increased the 
ability to identify a joint posterior mode. 

2.3 Adjusting for Bias in the number of 
reported life events 

The Bayesian framework additionally has the 
ability to model particular properties of data. It is 
anticipated a priori that on average subjects would 
experience the same number of life events in the 
year preceding 1996 as in the year preceding 1998. 
As demonstrated by the means in Table 2 (3 versus 
2), the observed data do not support this. An 
investigation of this possible measurement error 
bias was undertaken by constructing an additive 
model described below. 

Closer inspection of the estimates from the earlier 
Bayesian SEM analyses resulted in a relationship 
between life events in 1996 (X1) and in 1998 (X2) 
of the form X2 = δ X1, where δ denotes a non-zero 
constant depicting the quantity by which life 
events in 1996 are multiplied to derive the same 
number of life events in 1998. Under the above a 
priori expectations, the posterior value of δ should 
be one. It is suspected though that for the present 
data, δ, takes on a value less than one, depicting 
the quantity by which life events in 1996 are 
multiplied to derive the same number of life events 
in 1998. This should be able to be assessed by 
inspecting the posterior distribution of δ in the 
models described in Sections 2.1 and 2.2. 
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An alternative additive representation of this bias 
was also considered. Under this model δi is set 
equal to one in the model, but the relationship 
X1true=X1observed+ζ was imposed, where ζ indicates 
the difference between the true number of life 
events in 1996 (X1true) and the observed number of 
life events in 1996 (X1observed), that is, the degree of 
over-reporting. Then X1true is used in the remaining 
model equations. A prior mean of -2 was imposed 
on ζ.  This model is referred to as the Additive 
Adjusted Model. This second model indicates the 
ease with which the Bayesian hierarchical model 
can accommodate features such as measurement 
error [Congdon 2001; Wolpert and Mengersen, 
2005]. Results of this analysis are discussed in 
section 3.3. 

Each analysis described below was run in Win 
BUGS [Speigelhalter et al. 2000] for a total of 
500,000 iterations, with 500,000 iterations burn-in 
for a sample size of 7537..  

3. RESULTS 

3.1. Original Model Analysis 
Summary statistics for the observed composite 
scores used as inputs (X,Y) are given in Table 1. 
The table also shows the small age range of 
participants in this study, justifying the omission of 
age from further SEM analysis.  

Table 1. Summary statistics for inputs to Bayesian 
SEM. 
 

3.2. Informed/Adjusted Model Analysis  

The original Bayesian model proposed in Section 
2.2 was applied to the data. Plots of the posterior 
densities are depicted in Figure 3 for parameters 
linking health measures at baseline with the 
corresponding measures at follow-up. It can be 
seen that these parameters are unstable. The 
overall precision has some very large values 
consistent with its vague Gamma distribution. The 
instability of all these estimates is confirmed with 
the trace plots which are not presented. The 
centred model was then applied which only 
marginally improved the convergence and stability 
of the MCMC runs. Under the informed model, 
convergence diagnostics in WinBUGS were  

passed.  

Compared to the original model, the standard 
deviations of the simulated gamma estimates are 
much smaller relative to the corresponding means 
and Monte Carlo methods. From these results the 
most influential variables in this analysis are γ1, 
corresponding to Life Events 1996 and Mental 
Health 1996; γ4 , corresponding to Physical Health 
1996 and Physical Health 1996; β1 and β2 
corresponding to Physical Health 1996 and 
Physical Health 1998; and δ , corresponding to 
Life Events 1996 and Life Events 1998. 

Estimates of the posterior mean, standard deviation 
and 95% credible intervals along with other 
summary statistics generated from the informed 
model are presented in Table 2.  

3.3. Adjusting for Bias in Baseline Life Events 

An investigation of the possible measurement 
delta sample: 600000

 0.7145   0.715  0.7155

    0.0
1.00E+3
2.00E+3
3.00E+3

beta[2] sample: 600000

   -0.5     0.0     0.5

    0.0
    5.0
   10.0
   15.0
   20.0

beta[2]

iteration
609950609900609850

 0.9488
  0.949
 0.9492
 0.9494
 0.9496

 
   Figure 3. Posterior densities for the original 

Bayeisan model 
 

Table 2. Summary Statistics of Posterior 
Distribution generated from the Informed model. 

error bias in reporting of life events between 
periods reported in 1996 compared to those 
reported in 1998 was undertaken through the 
activities of more closely interpreting the original 
model and constructing an additive model. 
Summary statistics are presented in Table 3. It is 
recognised that this measurement error is likely 
due to the fewer response options to questions 
related to life events at baseline. Women appear to 
over-report on life events in the present time frame 
if no previous time frames are provided as 

 MH 
96 

MH 
98 

PH 
96 

PH  
98 

Age  
96 

LE 
96 

LE 
98 

Min 0.00 2.22 0.987 44.3 45.6 0.00 0.00 
Q1 77.1 65.0 59.5 65.4 46.7 1.00 1.00 
Q2 96.3 82.1 70.6 80.6 48.4 2.00 2.00 

Mean 88.6 75.3 65.5 74.7 48.3 3.00 2.00 
Q3. 106 90.4 76.5 86.7 49.2 4.00 3.00 
Max 118 101 83.7 93.8 50.1 25.0 25.0 

Node Mean       SD         MC Error      2..5      Median     97.5% 
γ1 5.8740   3.82E-4     1.659E-5      5.8730     5.8740     5.8750 
γ 2 0.2696   0.001027   5.424E-5      0.2675     0.2696     0.2716 
γ 3 0.5182   8.429E-4    3.053E-5     0.5166     0.5182     0.5199 
γ 4 6.2400   4.048E-4    1.762E-5     6.2390      6.2400    6.2410 
γ 5 0.1119   9.905E-4    5.141E-5     0.1099      0.112      0.1137 
γ 6 0.6455   8.416E-4    2.967E-5     0.6439      0.6455    0.6472 
Β1 0.8685   1.974E-4    1.074E-5     0.8682      0.8685    0.8689 
Β2 0.8895   1.744E-4    9.076E-6     0.8891      0.8894    0.8898 
τ -0.0510  1.551E-5   4.175E-7   -0.05103  -0.0510   -0.05107 
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response options, this effect known as telescoping 
as described previously. 

The posterior mean for τ is 0.72 with very small 
standard deviation (1.33E-4). This indicates a 28% 
inflation in the average number of life events 
reported in 1996, compared with 1998 and reflects 
the suspicion, described in Section 2.3, of biased 
reporting of life events. 

The alternative additive adjusted model was also 
fitted to these data. Noticeably greater mixing of 
the MCMC chains for all variables was observed 
under this model. Model parameters were 
inspected for stability and conformity to the 
anticipated collection. The corresponding density 
plots are shown in Figure 4 and support 
convergence. As expected, the posterior estimates 
are different under the two models, but the pattern 
of estimates is the same and the same variables 
impose most influence. Interestingly, despite a 
prior mean of -2 being imposed on the τ under the 
additive adjusted model, the posterior mean is very 
tightly around -0.051.  Note that it is difficult to 
relate this difference, obtained using the centred 
data, back to the original scale under this additive 
model. However, it does strongly support the 
suspicion of a bias in the number of life events 
 

Table 3. Comparison of the original and the  
additive models 
 

beta[1] sample: 50000

 0.8675   0.868  0.8685   0.869

    0.0

1.00E+3

2.00E+3
tau sample: 50000

-0.0511  -0.051 -0.05095

    0.0
1.00E+4
2.00E+4
3.00E+4

beta[2] sample: 50000

 0.8885   0.889  0.8895    0.89

    0.0
1.00E+3
2.00E+3
3.00E+3

gam[1] sample: 50000

  5.872   5.873   5.874   5.875

    0.0
  500.0

1.00E+3
 1500.0

gam[2] sample: 50000

  0.264   0.268   0.272

    0.0
  100.0
  200.0
  300.0
  400.0

gam[3] sample: 50000

  0.514   0.516   0.518    0.52

    0.0
  200.0
  400.0
  600.0

 
Figure 4. Posterior densities of parameter 
estimates generated from the Adjusted Additive 
Model.   

4. DISCUSSION AND CONCLUSIONS 

The Bayesian structural equation model 
formulated above follows the LISREL 
representation as described by Congdon [2003]. 
Model generalisations can be easily introduced as 
considered appropriate. The model developed in 
Section 2 takes advantage of both the distributional 
properties of the composite scores and the 
corresponding error structure. It is conceptually 

easy to augment the model to include a hierarchy 
that estimates the composite scores using the 
individual item data. Alternatively, the hierarchy 
describing the composite scores could be omitted 
entirely from the model, with estimation of the 
relationships between the latent variables coming 
directly from the individual item scores. 

Because there are only two time periods under 
consideration, the bivariate nature of the composite 
scores over time can be reflected through the 
single variable, δ. An alternative is to consider a 
fully multivariate framework for (Y,X) and (θ, η) 
which would accommodate more general 
correlation structures between the observed 
composite scores and between the latent variables. 
This would also extend more naturally to multiple 
time periods. This formulation of the model was 
indeed constructed here, but was difficult to 
implement in the version of WinBUGS used for 
analysis. It is anticipated that later versions of this 
software will better accommodate these higher-
dimensional analyses. 

Further analysis of the data was performed after a 
careful examination of the data. As evidenced in 
the conducted exploratory data analysis reported 
elsewhere [Stojanovski, 2005], the dataset 
considered here creates a challenging context for 
SEM analysis. Many of the variables demonstrate 
pairwise relationships which, when combined with 
the uncertainty induced by vague priors, results in 
a poorly identifiable model and regions of 
relatively flat posterior probability. As 
demonstrated by the analyses under the three 
models above, in this situation it is important to 
carefully choose priors that allow the MCMC 
algorithm to start in a region of high posterior 
probability.  

There is still a concern that the algorithm fails to 
explore the entire space and may identify only a 
local mode. This concern was partially ameliorated 
here by starting the algorithm within initial values 
±10% of the univariate means. Very similar 
posterior estimates were obtained from all starting 
points. Given the tighter variances on the priors in 
the informed models, it did not make sense to 
initiate the algorithm in regions further away from 
this, nor did it make sense to change the prior 
means. Moreover, as indicated by the poor results 
of the original and centred models, starting the 
algorithm from positions far away from this region 
of high probability did not lead to strong 
confirmation of other joint posterior modes.    

Further evaluation of this concern was undertaken 
by simulating data with a much stronger signal 
than in the dataset considered here. The algorithm 
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returned estimates that were equal (within Monte 
Carlo error) to the simulated values. Moreover, 
much better mixing of all variables was observed 
and convergence was obtained in a much shorter 
number of iterations (200,000). Reassuringly, the 
strong priors imposed in the model enabled the 
algorithm to start in a region of high probability 
but did not constrain it to staying in that exact 
region. Using these models we are able to explore 
the probability distributions of middle aged women 
exposed to life events under certain scenarios 
which may be informative and provide some 
insight about the model and behaviour of the 
parameters.  

Considerable issues in applications of repeated 
sampling remain relatively unexplored. As 
demonstrated here, the Bayesian framework 
provides a flexible coherent way of doing this. 
Further research remains into the best 
interpretation of coefficients and their posterior 
distributions under the Bayesian framework. These 
are general Bayesian problems of current 
international interest [Congdon 2003].  
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 Original Model      Additive Model 
Node Posterior 

Mean 
Posterior 

S.D. 
Posterior 

Mean 
 Posterior  
   S.D. 

γ1 7.04 7.7E-4 5.87 3.8E-4 
γ2 1.25 1.44 0.27 1.0E-3 
γ3 0.71 0.83 0.52 8.4E-4 
γ4 7.48 8.2E-4 6.24 4.0E-4 
γ5 1.04 1.46 0.11 9.9E-4 
γ6 0.76 0.84 0.65 8.4E-4 
β1 0.72 0.28 0.87 2.0E-4 
β2 0.76 0.27 0.89 1.7E-4 
τ 0.72 1.33E-4 -0.051 1.5E-5 
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