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EXTENDED ABSTRACT 

This contribution is a reflection on the often men-
tioned idea of declarative modelling, linking it to 
the most recent advances in knowledge represen-
tation science and to the semantic web initiative. I 
will present a next-generation approach to model-
ling that has the potential of unifying representa-
tions of data and metadata, their use in the chain 
of processing in scientific workflows, and the 
definition of dynamic models. The key tool for 
this unification is the formal statement of the con-
ceptualization that lies behind the choice of repre-
sentation paradigm used (ontology). I will de-
scribe briefly the fundamental concepts, the 
dominant approaches and the most important uses 
of ontologies in natural system modelling, with 
reference to their increasing adoption in projects 
worldwide. 

While laying out a taxonomy of different ways of 
conceptualizing a natural system for the purpose 
of simulation, I will highlight the implications of 
the choice of the abstraction level for modeling, 
data mining and data/model integration.  The pa-
per will discuss the potentials of extending the 
presented ontology-driven approach to the seman-
tic annotation of datasets, the building of compu-
tational workflows for data analysis, the definition 
and computation of natural system models, and 
the specification of queries for knowledge discov-
ery based on distributed databases. 

I will present well-known environmental models 
as examples, with reference to existing and novel 
modelling systems and formalisms.  My aim is to 
show how the choice of a purely declarative rep-
resentation of a model, supported by appropriate 
domain ontologies, can not only allow a transpar-
ent integration of the model with independent, 
heterogeneous data and models, but can also turn 
a model representation into a powerful discovery 
tool that can be used as a constraint over a dis-
tributed knowledge base or semantic web in order 

to discover new knowledge in a fully automated 
way.  
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1. INTRODUCTION: ONTOLOGIES AND 
THEIR ROLE IN NATURAL SYSTEM 
MODELLING. 

This paper links the often-mentioned notions of 
declarative modelling, metadata, scientific work-
flow, data integration and environmental databases 
in a synthesis inspired by the most recent advances 
in knowledge representation. I will start by intro-
ducing the key tool for this unification, the ontol-
ogy. I will then proceed to describe how the for-
malization of a conceptual domain can inform the 
gathering of data, the conceptualization of models, 
and their simulation. I will describe a unifying 
perspective of natural system modelling with ref-
erence to the increasing adoption of a knowledge-
based approach in projects worldwide. The synthe-
sis described in this paper has wide-ranging impli-
cations for the practice of natural system model-
ling and for environmental research at large. I de-
vote the last chapter to describing these prospec-
tive implications, trying to describe the novel sce-
narios and scientific approaches that are made pos-
sible by the adoption of a knowledge-based per-
spective. 

Ontologies are formal descriptions of a conceptu-
alization of a domain of interest. An ontology is a 
set of statements that define concepts and relation-
ships between them. In an ontology, a concept 
(also referred to as a class) is the statement of a 
concept, usually including at least textual descrip-
tion and a short label. Concept names (IDs) and 
descriptions do not define meanings formally: 
concepts are always defined by their properties, 
not by their names. A property is the statement of 
an attribute associated with a concept. The state-
ment always mandates the type of the property 
value and its cardinality, or the admitted number 
of possible values. For example, concept Person 
can have a birth-date property whose value must 
be a Date and whose cardinality is one. The value 
of a property can be a concept, an instance (see 
below) or a textual value. Special properties allow 
building the bones of the knowledge structure: 
notably the is-a (or subclass-of) property allows to 
build generalization-specialization hierarchies (e.g. 
Employee is-a Person). Properties are often treated 
using a class model in ontologies, and can be gen-
eralized or specialized just like concepts: e.g. “de-
pends-on-economically is-a depends-on”. In-
stances (or Objects) are the statement of an  entity 
that must “exist” in some  - real or virtual – world, 
and represents the “incarnation” of a stated con-
cept. An ontology that defines a set of instances 
along with the concepts they incarnate is often 
called a knowledge base, although the term is not 

rigorous. Any database with a formally specified 
schema can be considered a set of instances of the 
correspondent ontology, where the schema acts as 
a proto-ontology that defines terms and basic rela-
tionships, and the database paradigm provides an 
interface and optimized methods for storage and 
retrieval of instances based on matching of proper-
ties with user-defined constraints. Relationships 
link an instance to the value of a specified prop-
erty. E.g. the statement “JohnSmith birth-date 10-
10-1972” can be considered the statement of a 
relationship. Relationships must adhere to the 
model specified by the concept and its properties. 

A useful ontology usually contains more than just 
a list of terms and their definitions. Ontologies can 
be used simply as controlled vocabularies, a set 
of concepts with no properties, whose IDs define a 
set of usable terms. A step further is a taxonomy, 
where concepts are arranged in a generalization 
(is-a) hierarchy. A schema is an ontology where 
properties other than is-a are defined for classes.  
A generalization hierarchy may or may not be pre-
sent.  These normative uses, where ontologies 
provide guidance for conceptualization, encompass 
formalizations that are common in natural system 
information management and modelling, such as 
metadata standards and database schemata. The 
main rationale for the existence of ontologies, 
however, is to enable reasoning on natural sys-
tems, either by a human actor or by an automated 
program (reasoner). The main operations in rea-
soning are subsumption (inferring that concept A 
is more general that concept B) and classification 
(inferring that instance X is the incarnation of con-
cept A). In the frame-oriented approach, concepts 
are arranged in a taxonomy, with arbitrary proper-
ties, constraints, objects, values. In the description 
logics framework, necessary and sufficient condi-
tions for concepts and instances to belong to a 
class can be specified, allowing automated first-
order logics reasoning.  These uses of ontologies 
open new doors to natural system modelling that 
will be explored in the following. This use relies 
mostly on restrictions, the equivalent of first-
order logic statements that define allowable values 
and patterns of values for instances to belong to 
concepts within an ontology. The description lo-
gics ontology framework which has been adopted 
by the Semantic Web activity is the Ontology Web 
Language OWL: (W3C 2004). 

2. CONCEPTUALIZING DATA 

Data can be considered “static models” of systems: 
they always conform to conceptual models, and 
depend on (usually implicit) assumptions and 
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world views just as much as dynamic models. 
Conventional wisdom divides “raw data” – actual 
numeric measurements – from “metadata”, the 
information that allows a user to “make sense” out 
of the numbers, providing needed spatiotemporal, 
measurement, and other informative contexts for 
the numbers. In an ontology-informed framework, 
the starting point is the careful formalization of the 
concept that is represented in the data, including 
the definition of all its characteristics as properties. 
Each dataset or piece of data will be represented as 
one instance of that concept. One of its properties 
will be “numeric-value” and will link to the raw 
data, e.g. representing number using textual or 
binary values. The other properties constitute the 
“metadata”, which are, in this case, connected to 
an explicit knowledge model (the ontology) whose 
arbitrary richness now allows reasoning and me-
diation with other data using other knowledge 
models whose compatibility can be assessed by 
reasoners.  The ontology paradigm in its simplest 
incarnation offers a field-by-field substitution for 
the relational schemata conventionally used to 
represent data. Schema information contained in 
normative ontologies can be construed as an add-
on to an existing database management system, to 
be implemented into a relational database engine 
or another (such as an XML database) in a modu-
lar fashion. In addition to that, ontologies offer a 
powerful synthetic way to specify both the data 
schema and the structure of the knowledge behind 
it. While a relational schema can be considered the 
“structural” component of the knowledge, ontolo-
gies allows specifying the how and the why at the 
same time. The database paradigm that includes a 
rich knowledge model such as that specified by 
description logics is often called deductive data-
base.  

Many metadata standards have been formalized as 
ontologies: e.g. the ISO 19115 standard for spatial 
information (ISO 2004). Yet, providing a set of 
ontologies to define the actual meaning of  the 
metadata properties is a much more sophisticated 
activity, because the terms of a metadata dictionary 
lend themselves to different, often competing in-
terpretations that ultimately depend on the applica-
tion. All mediator systems that can integrate data 
and models need such a set of ontologies 
(Ludaescher, Gupta et al. 2001); the ones related to 
the process of measurement and the conceptualiza-
tion of time and space are usually crucial. Efforts 
are underway in projects such as Kepler (Kepler 
2004; SEEK 2004), IMA (Villa 2001; Villa In 
press) and SEAMLESS (SEAMLESS 2005) to 
develop a set of ontologies that provides a useful 
and consensual description of an application do-
main.  Concepts are slowly consolidating toward a 
set of common terms and definition to define se-

mantically-explicit modelling. Conceptualizations 
evolve with their applications, and this process is 
not expected to be ever complete, but efforts are 
underway to identify tools and protocols to make it 
manageable and trackable in the long term. The 
reminder of this paper adopts the terminologies 
and higher-level conceptualization laid out in the 
IMA and Kepler approaches. 

3. SCIENTIFIC WORKFLOWS 

A scientific workflow is a pathway between two or 
more processing steps, along which a flow of data 
is transformed until a desired result is reached. 
Workflows are usually assembled by users to con-
nect sources of input data (such as a database 
query) to models, pre- and post-processing algo-
rithms (such as statistical data reduction or calcula-
tion of indicators from model results) and visuali-
zation software. A workflow environment is thus a 
“black board” for users to assemble the flow of 
computation needed to address a particular prob-
lem. In functional terms, a dynamic model can 
often be seen as a workflow, because in the end all 
models process input information and produce a 
set of output results. The similarity, however, does 
not hold when models and workflows are consid-
ered in semantic terms: the meaning of a model is 
not to produce outputs, but to describe a natural 
process. In fact, a more correct generalization sees 
workflows as special cases of models, whose 
“paradigm” entails data transfer and transforma-
tion along the connections of an artificial system.  

In this sense, a workflow is amenable to the same 
ontology-based description as any other model: 
concepts of “input”, “output”, “processing step” 
can be specialized as needed using ontologies that 
can describe all steps of any workflow environ-
ment.  The most important use of ontologies in 
workflow environments, however, is another: to 
allow the system to enforce meaningful, correct 
connections between inputs and outputs, and – if 
necessary and possible – insert transformation 
steps in the workflow that guarantee a proper 
match. The operation of enforcing and supporting 
semantic consistency along data paths in work-
flows is usually called semantic mediation 
(Ludaescher, Gupta et al. 2001), and it is essential 
to guaranteeing correct results particularly when 
processing steps are heterogeneous and users are 
not domain experts. To allow semantic mediation, 
all inputs and outputs must come tagged with con-
cepts from ontologies that are known to the work-
flow environment, and the latter needs to use a 
reasoner program that ensures the consistency of 
concepts along each connection made by the user. 
The operation of associating concepts from on-
tologies to input and output “ports” of workflow 
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components is usually called semantic annotation, 
and it is done by the same experts that have devel-
oped the models or processing steps. Conceptual 
compatibility of inputs and outputs is most often 
tested with a reasoning operation that assesses se-
mantic differences based on matching of properties 
and not of names. The example below illustrates 
how this may be done. 

A model X is “packaged” as a workflow compo-
nent and all its inputs are semantically annotated 
by its developer according to a set of commonly 
understood ontologies. The semantic annotation 
operation requires that the conceptual details of 
each “port” that are relevant to the calculations are 
understood and appropriately defined. As an ex-
ample, an input I representing temperature at sur-
face may require that the temperature is expressed 
as monthly data over the simulated time span, and 
the model has only been calibrated for tempera-
tures in the 19–30 C range so it should not accept 
data outside of these boundaries. Semantic annota-
tion is a way to express such conditions (which 
normally are only expressed verbally in the 
model’s documentation) in a formal and machine-
readable way. In order to do so, an ontology is 
created to define model X, where each exposed 
“port” is expressed as a concept defined in terms 
of known concepts. Using restrictions and con-
cepts from appropriate ontologies, the concept 
definition associated with input I may look similar 
to that shown in the text box. 

When a semantically annotated model is used in a 
workflow, inputs and outputs are connected by the 
user. For example, a temporal series of tempera-
ture data retrieved from a database may be con-
nected to input I. Upon connection, a semantically 
aware workflow environment can ensure the ap-
propriate match between the input and the output 
by feeding the respective semantic annotations to a 
reasoner and ask if they describe the same concept 
(a subsumption operation). A reasoner can make 
the necessary inferences to assess the equivalence 
of types that have different names, based on their 

properties. In some cases, the compatibility may 
not exist directly, but the reasoner can establish 
that a transformation can be inserted in the data-
flow to make the input and output compatible. For 
example, the data source could be weekly data 
rather than monthly. A sophisticated workflow 
environment (such as Kepler) can understand that 
the data need to be aggregated into a monthly 
timeseries, and direct the workflow environment to 
create a transformation step to perform the aggre-
gation and insert it between the data source and the 
model. If a transformation cannot be established 
due, e.g. to incompatible resolutions or excessive 
transformation error, the reasoner can output an 
appropriate failure message. 

4. CONCEPTUALIZING MODELS 

Dynamic models, like data, always conform to a 
conceptualization, and there is in fact no philoso-
phical difference between specifying data or mod-
els when this is done using ontologies (Villa 2001; 
Villa In press). Any sort of model can be success-
fully specified as a set of instances of the appropri-
ate ontologies. The main practical difference be-
tween data and models is the increased conceptual 
richness necessary to describe how things change 
in time and space. This requires at least notions of 
linkage between concepts with causative or de-
pendency relationships that are normally not nec-
essary when specifying data. It also requires de-
veloping ways to interpret this causality. The set 
of abstractions (concepts) that allows conceptualiz-
ing and expressing those cause-effect relationships 
and their results is the adopted modelling para-
digm, of which examples abound (e.g. ordinary 
differential equations, stock-and-flow, or individ-
ual-based). A modelling paradigm, like any consis-
tent conceptualization, can be captured into an 
ontology. Most existing modelling software sys-
tems (e.g. STELLA, SIMILE) conform to one im-
plicit ontology, which defines their notion of enti-
ties familiar to the user such as state variables, flux 
variables etc. Advanced integrative systems (e.g. 
IMA) can load different ontologies, which, sup-
plemented by the necessary software, enable them 
to manipulate models adopting heterogeneous 
modelling paradigms. Such systems are in the best 
position to enable integration of independently 
developed models adopting different paradigms 
into a higher-level, multiple-paradigm model.  

The wording declarative modelling has been used 
to refer to a specification of models that is based 
on the attributes and semantics of the natural sys-
tems rather than the algorithm that calculates their 
results. Ontologies support declarative modelling 
by providing, at the same time, schemata for model 
declaration and meaning for these schemata. In-

I ::=  
is-a: Temperature, 
vertically-distributed-in: 
PlanetarySurface,  
has_unit: Fahrenheit, 
max-value:  
(Temperature, has-value: 30.0, 
has-unit: Celsius)  
min-value:  
(Temperature, has-value: 19.0, 
has-unit: Celsius)  
distributed-in:  
(TimeSpan, step: 1, has-unit: 
Month) 
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stances of ontologies represent declaratively ex-
pressed models that refer to concepts laid out in 
the ontologies. Such declarations contain enough 
information to enable a software infrastructure to 
simulate the behavior of the systems represented 
over a user-defined temporal and spatial extent. 
Thanks to the rich meaning made possible by on-
tologies, a workflow environment can properly 
connect models to data, and feed quantities calcu-
lated by simulation to other models in the same 
environment. 

Concept-driven modeling environments can be 
devised where all concepts used to model a natural 
system are explicitly defined by standard ontolo-
gies, and all technological details related to the 
calculation of the model are hidden from the user. 
This approach unifies and outgrows common no-
tions such as “metadata” and “modeling paradigm” 
and opens perspectives of seamless data/model 
integration and intelligent, hypothesis-specific 
database querying.  These advanced knowledge-
based systems (e.g. IMA, Villa, 2001; Villa, in 
press) are typically not committed to a particular 
set of concepts except for a core ontology, care-
fully designed for generality, paradigm neutrality, 
and extensibility. Their rationale is the notion that 
an accurate description of nature’s entities is 
enough information to allow a system to describe 
data, calculate and integrate models, as long as 
enough knowledge has been built into the system 
to allow their description. The uncoordinated ex-
tensibility of such environments allows domain 
experts to produce knowledge describing specific 
disciplinary contexts. Users can adopt the corre-
spondent concepts to produce representations of 
natural systems that the system knows how to re-
solve into numeric states. 

The philosophy of declaring a model can be sum-
marized into laying out (1) reference concepts and 
properties to define the identity of each modelled 
entity, and (2) the properties that capture the causal 
relationships that are the key to distinguish a 
model from data.  Causality in conventional mod-
els is usually expressed through equations, defined 
to calculate the value of variables. Equations, by 
naming the values of other variables, implicitly 
define causal relationships that are viewed as de-
pendencies from a processing point of view. An 
ontology-based framework can make these de-
pendency relationships explicit, and add semantics 
to them by means of specialization. So, for exam-
ple, a generic depends-on relationship can be spe-
cialized into a flows-into relationship between a 
state variable and a flux variable (rate), in order to 
inform the underlying software architecture that 
the flux must be integrated over time. The notion 
of variable, so central to conventional approaches, 

can similarly be enriched and made dependent on 
the modelled entity. For example, in an individual-
based paradigm, variables describe quantitative 
traits of modelled individuals, but maintain the 
link to the individual which is the main entity con-
sidered. No conflicts need exist between para-
digms, whose conceptual boundaries often become 
blurred when a explicit knowledge-based approach 
is used, particularly if notions of scale are formally 
defined (Villa In press). 

There are limits to the declaration of models in 
current ontology frameworks, particularly if rea-
soning capabilities must be preserved. These limi-
tations stem from the fact that any dependency 
other than linear requires second-order logics 
statements to be fully formalized, and the handling 
of second-order logics is beyond the capabilities of 
existing reasoning systems. The dominant para-
digm, Description Logics, can only operate on  
first-order statements.  Even with these limitations, 
reasoning can be profitably used to enforce correct 
design and consistent definition of models.  As an 
example, the biodiversity ontology used in the 
IMA to model a community states that coexistence 
of populations in a community (e.g. as captured in 
the coexisting-population relationship) also im-
plies coexistence in space and time. Software im-
plementations of the approach can be taught to 
automatically check that the specification is con-
sistent with coexistence in both space and time 
before the model can be accepted or calculated. 
This prevents users from defining inconsistent 
models and helps retrieval of compatible data 
sources from databases when the model is applied. 
Reasoning of such kind can be used to assist 
proper design and application of a model by ena-
bling a software system to enforce model design 
disciplines, transcending the mere engineering 
realm, and therefore facilitating the use of complex 
simulation models by non-scientists such as deci-
sion makers, and ensuring their correct application 
at the same time.   

5. PERSPECTIVES 

Uniform, paradigm-explicit, software-independent, 
and knowledge-rich representation of data and 
models opens both obvious and less obvious per-
spectives. Among the obvious ones, models be-
come dependent on the ontologies that provide 
their meaning, not on the software that calculates 
them, so that can be executed by different infra-
structures, translated, and integrated with data and 
other models. Current efforts using semantics to 
enable such integration are at the forefront of re-
search in several fields: SEEK (SEEK 2004) in 
ecology and biodiversity, GEON (GEON 2005) in 
geology, GBIF (GBIF 2004) in taxonomy, 
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SEAMLESS (SEAMLESS 2005) in agriculture. In 
the following, I will explore two less-obvious per-
spectives opened by modelling nature at the con-
ceptual level. The first case is the seamless exten-
sion of metadata semantics to declarative model-
ling, enabling integrated specification and storage 
of data and models. The second case, a direct con-
sequence of the first, is the use of abstract model 
structures as powerful search tools to hunt for sig-
nificant regularities in distributed data collections. 

5.1. Uniformity of data and model represen-
tations 

The common “hare and lynx” predator-prey sys-
tem evokes a nonlinear differential equation sys-
tem or a discrete “stock and flow” model in the 
mind of most ecologists. Figure 1 explores this 
model in a knowledge-based framework: in 1A, 
the “identity” of the system is captured in a par-
ticular instant of time, while in 1B the knowledge 
necessary to infer a dynamical model is added. 

 
Figure 1. Portions of a possible conceptualiza-
tion of a predator-prey community. In (A), the 
system is conceptualized as static. In (B), con-
ceptual details from a modeling ontology are 
added that allow a system to infer a calculation 
workflow for the system. 

The system shown uses concepts from biodiversity 
ontologies that describe populations and communi-
ties, coupled with a taxonomy ontology that allows 
defining species unambiguously by referring to 
and reinterpreting data from known repositories 
such as GBIF (GBIF 2004). The knowledge model 
in 1A is essentially a dataset: it states that at a cer-
tain time two populations coexist in a community, 
and have specified numerical abundances. Yet, it’s 
much richer than a typical dataset with conven-

tional metadata, because of the added knowledge 
expressed in the ontologies. System 1A is the 
equivalent of two state variables with initial condi-
tions and no dynamic information. The specifica-
tion of the population abundances can be extended 
to inform the system of how they change in time. 
For example, adopting a dynamic system paradigm 
based on “stocks” and “flows”, we can state that 
the abundance of the lynx population is not only a 
numeric abundance, but also a stock, and refer to a 
suitable dynamic systems ontology to provide a 
formalization of the concept. Its time specification 
can say that while its value in the hour following 
measurement is the initial value of 1A, the extent 
now expresses its state over a one year temporal 
extent. Corresponding flows are added and linked 
to the existing model to express the factors that 
influence the change in the stocks. A system can 
analyze the declaration and decide that in order to 
know the numeric state of the system over the 
given extent, the stock and flow identities require 
difference equations to be defined, and the initial 
state must be extended in time by integrating the 
flows. The result should preserve the original iden-
tities, producing a system very similar to 1A, only 
with different abundance values per each time step. 
The system will automatically define a process in 
terms of variables, inputs, outputs, concepts that 
users won’t need to manipulate unless they want 
to. The paradigm-specific information can be ab-
sorbed in the knowledge base of the framework, 
and users only need to concentrate on accurately 
describing the system using known, well-
documented concepts. The dynamic specification, 
shown partially in 1B, is considerably more ver-
bose, but still recognizable as an extended version 
of the previous “static model”. It is noteworthy 
how metadata, units, and other information are the 
same: storage, query or inference can use the same 
infrastructure for either model. 

Modeling at the conceptual level allows users to 
employ a language that’s tailored to the knowledge 
domain of reference, adding the necessary dy-
namic information to the definition so obtained, 
and let the system figure out an appropriate com-
puting workflow. The advantage is that, as each 
modeling paradigm can be described by a set of 
ontologies with corresponding software, a system 
can be extended so that, for example, the 
flow/stock model can coexist with others in the 
frequency domain or with individual-based mod-
els. The details of the scheduling and the interac-
tions between different calculation workflows can 
be sorted out automatically. Another important 
consequence is that when space and time become 
part of the allowed semantics, there is no need for 
specially tailored tools for spatial modeling, be-
cause such functionalities can be invoked as neces-
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sary by the knowledge-based system. It is for ex-
ample conceivable to make a non-spatial model 
spatially explicit by simply describing one or more 
of its components as distributed in space (Villa, in 
press). A properly configured system can propa-
gate the notion of space in one concept to the 
whole conceptual network, or mediate competing 
representations by operating transformations, e.g. 
to propagate coarse polygon data over a fine-
resolution grid. 

5.2. Declarative modelling for  knowledge 
discovery 

In a distributed database context, knowledge-based 
modeling opens novel and exciting perspectives 
such as “model-driven query” (Villa In press). An 
appropriately general version of a model can be-
come a powerful discovery tool that can be used as 
a constraint over a distributed knowledge base or 
semantic web in order to discover new knowledge 
in a fully automated way.  For example, by defin-
ing an instance of a food web as the realized map-
ping of a semantic relationship (e.g. “feeds-on”) on 
the concept “natural-population”, a system can 
automatically translate this definition into a query, 
and launch an iterative process that identifies all 
potential food webs represented in the population 
data stored in a semantically annotated database. It 
is easy to imagine the power deriving from match-
ing an abstract model structure to a distributed 
database that’s semantically annotated. By describ-
ing patterns of interest in terms of ontologies, re-
positories of ecological knowledge with sufficient 
semantic information can be used to automatically 
discover patterns and relationships that have tradi-
tionally taken lengthy investigations to find, even 
when only the necessary data are present in a data-
base. 

6. CONCLUSIONS 

While by no means trivial, the software aspects of 
knowledge-based systems are within reach and 
prototypes of knowledge-based modeling systems 
are in use today. The major challenge is the devel-
opment of the extensive knowledge base necessary 
to enable large-scale usage of these approaches. 
This challenge is not only technical: even when the 
difficulties of developing, storing and maintaining 
large ontologies are successfully addressed, their 
recognition and acceptance will remain difficult.  
Knowledge based computing will require a para-
digm shift in the way ecologists think about eco-
logical modeling.  For now, knowledge based ap-
proaches are a little-understood black box in the 
minds of most scientists.  It will require a few, 
compelling demonstration projects for the advan-
tages of knowledge-based approaches to become 

apparent to the larger ecological community.  Even 
then, it will require community agreement on the 
knowledge base itself (ontological commitment).  
A common resistance in the scientific community 
to the use of ontologies is the fear of committing to 
a specific conceptualization that may not fully re-
flect one’s scientific view.  Ontologies exist for 
eminently practical reasons, and concerns such as 
these are easy to answer with adequate discussion. 
Nevertheless, the time, training, and discussion 
necessary to adequately dispel them should not be 
underestimated. 
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