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EXTENDED ABSTRACT 

Mastitis, one of the most significant diseases in 
dairy herds, is a highly complex sequence of 
events with various biological causes and 
associated physiological and behavioral effects 
that occur as bacterial infection progresses. The 
aim of the research is to develop a model for on-
line detection of mastitis for robotic milking 
stations.  

The data include milking data collected over a four 
month time period by robots on four farms and 
monthly test-day milk data collected by 
veterinarian for determination of the incidence of 
clinical mastitis (i.e. healthy cows and sick cows). 
A major part of work involved data pre-processing 
that plays an important role in this model 
development. Since the milking machine operated 
continually and it failed from time to time, an 
approach for normalizing the variables using 
running means for herd and individual cows over 
their own history of milkings was used. The effect 
of biological differences on milk yield between 
cows was dealt with using relative differences 
among quarters instead of absolute values. The 
final selected variables were normalized peak 
electrical conductivity (EcMax), normalized 
quarter yield fraction (QYF) and maximum 
relative deviation of EcMax values among four 
quarters for a cow (EcDV). 

Parallel visualisation of data for each farm and 
combined datasets show that most of sick cows 
have high EcMax, high EcDV but low QYF, 
which was confirmed by correlation analysis. After 
data pre-processing, a linear discriminent function 
classifier was developed producing 81% accuracy 
for mastitic cases and 100% for healthy cases.  In 
order to improve results, the dataset was further 
used for constructing artificial neural network 
(ANN) models. There were only 32 records for 
sick cows and 1026 for healthy cows 
corresponding to monthly veterinary diagnostic 
test. Due to the low number of mastitic cases, five 
random datasets were generated from original data 

each having most of the sick cows and a randomly 
selected portion of healthy cows. Five NNs (5 
experts) were developed from these datasets and 
validated.   All of these had 94% classification rate 
for mastitic cases and 100% for healthy ones.  In 
order to further improve classification rate of sick 
cows, three self-organising maps were trained with 
three-fold cross validation.  The three maps 
produced 95% average classification rate for 
mastitic cows and 97% for healthy cows.  In the 
next stage of research, the results will be used to 
make a final diagnosis with an associated 
probability of uncertainty.  

273



1. INTRODUCTION 

Mastitis, as one of the most costly diseases, has a 
great economic impact on the dairy industry. Other 
than the measure of the presence of pathogenic 
bacteria, the detection of which can be time-
consuming and expensive, the change of somatic 
cell count (SCC) and electrical conductivity (EC) 
in milk have been found to be the most influential 
indicators and used in indirect tests for sub-clinical 
and clinical mastitis (Holmes et al., 2002; Nielen 
et al., 1995a; Nielen et al., 1995b; Whyte et al., 
2003; Yang et al., 1999, 2000). Moreover, the 
change of milk production has also been reported 
to be a significant factor associated with the 
presence or absence of clinical mastitis (Heald, et 
al., 2000; Yang et al., 1999, 2000). Since EC, milk 
production and milk temperature can be measured 
easily by robotic milking devises, it is possible to 
develop a system that detects mastitis 
automatically during milking. 

Due to some obvious statistical problems, such as  
co-linearity between subsequent measurements, 
unusual peak values and non-disease related 
fluctuations of variables (Nielen et al., 1995b) 
associated with automatically measured milking 
data, it is common to pre-process data by means of 
running averages of variables to account for the 
herd effect. Past studies (Holmes et al., 2002; 
Whyte et al., 2003; Woolford et al. 1998) on 
mastitis suggest that comparison of absolute milk 
EC levels should be avoided because some cows 
may naturally have high EC. 

Artificial neural networks have been employed in 
recent research (Heald et al., 2000; López-
Benavides, Samarasinghe, & Hickford, 2003; 
Nielen, Spigt et al., 1995; Yang et al., 1999) to 
distinguish between healthy and mastitic cows, and 
have performed reasonably well. As part of a 
project that aims to develop an on-line diagnosis 
system for mastitis, this paper presents some initial 
progress of the study. 

2. OBJECTIVES 

The study aims to develop a method for diagnosis 
of mastitis in dairy cows.  The specific objectives 
are to analyse data collected by robotic milking 
stations; and to explore statistical and neural 
network methods for detecting mastitis, for further 
development into on-line diagnosis systems for 
robotic milking stations. 

3. MATERIALS AND METHODS 

3.1. Data and Variables 

The data for this research were collected from four 
farms for the period from November 2002 to 
March 2003. It includes milking data measured by 
robots two or three times a day for each cow and 
monthly test-day veterinary milk data for the 
determination of the incidence of clinical mastitis 
in each cow. 

The following variables were measured for each 
quarter of each cow during each milking that 
normally takes about few minutes: peak EC 
(EcMax), milk temperature at the peak EC, the 
total time milk has been seen at the quarter during 
a milking. The monthly veterinary data consist of 
California Mastitis Test (CMT) scores and results 
of the visual inspection for milk and udder, for 
each quarter of each cow on the test days. In this 
research, the quarter milk samples with a visually 
abnormal appearance and a CMT score that was 
greater than two were considered to be clinically 
mastitic. In contrast, the quarter milk samples with 
a visually normal appearance and a CMT score 
less than three were considered to be non-mastitic. 

3.2. Preprocessing of Variables 

Milk Production.  Current research used the total 
time milk has been seen at a quarter during a 
milking to approximate the volume of milk 
produced by that quarter. For each quarter, quarter 
yield fraction (QYF) was defined as the ratio of 
milk production of a quarter in a milking to the 
sum of milk production of all four quarters in a 
milking. 

The QYF was corrected based on running means 
of QYF in our analysis. The kernel calculation is 
illustrated below: 
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where 

  '
tx  = the running mean of QYF at time t, 

   tx  = the measured QYF at time t, 
    a  = coefficient for the equation, and 
 1−tx  = the measured QYF at time t – 1. 

a  is an arbitrary  integer value that is analogous to 
the size of a “sliding window.” To smooth the 
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data, two levels of QYF running mean were 
calculated: 

• The running mean of QYF for herd.  In 
our research, the value of a  was chosen 
as 50 for this level. Thus, the herd 
running mean of QYF of the right-front 
quarter at milking t, for example, 
approximates the average of the all right-
front quarter QYF values through milking 
(t-50) to milking t. 

• The running mean of QYF for individual 
cows over their own history of milking. 
For this analysis, a  value of 3 was 
adapted. 

The new variable normalized QYF (NM QYF) was 
calculated for each quarter of each cow at each 
milking by dividing the cow QYF running mean 
over its corresponding herd QYF running mean at 
the milking. 

Electrical Conductivity.  The pre-processing of 
EcMax followed the same procedure as that for 
milk production. The only difference was x 
referred to the running mean of EcMax, instead of 
QYF, in Eq. 1. Running means of EcMax were 
calculated at herd level and cow level, 
respectively, for each quarter of each cow at each 
milking. Normalized EcMax (NM EcMax) was the 
cow EcMax running mean divided by its 
corresponding herd EcMax running mean. Relative 
deviation of EcMax (EcDv) within quarters for 
each cow at each milking was introduced to take 
into account any biological differences between 
cows. It was calculated as follows: 

min

min

NMEcMax
NMEcMaxNMEcMaxEcDv i

i
−=        [2] 

where iEcDv  is EcDv of any of the four quarters 

of a cow, iNMEcMax  is normalized EcMax of 

the same quarter, and minNMEcMax  is the 
smallest value of normalized EcMax between four 
quarters. 

After the data preprocessing, robotic milking data 
corresponding to monthly veterinary test data were 
extracted to develop a new database for the 
analysis. The resulting data set had 32 records 
indicating clinical mastitis cases and 1026 
indicating non-mastitis cases, according to the 
monthly veterinary test. 

3.3. Analysis 

Analysis consists of two stages: statistical data 
preprocessing and model development. In 
preprocessing stage, parallel visualization and 
correlation analysis were done to explore 
relationships and trends. Principle component 
analysis was conducted for removing multi-
colinearity and more efficient separating of 
mastitis cases. In modeling stage, three kinds of 
classifier were applied and their results were 
compared. Traditional linear discriminent analysis 
was used to test if patterns in the data could be 
linearly separated. Two variations of ANN, the 
multilayer perceptron (MLP) and the self-
organizing map (SOM) were trained to detect the 
presence or absence of clinical mastitis. These two 
stages are described in detail next. 

4. RESULTS AND DISCUSSION 

Statistical and visualization methods of data 
analysis were performed on the resulting data set 
for inspection of natures of the variables, such as 
data distribution and correlation, with respect to 
mastitis status (i.e. healthy and clinical mastitic). 
Data for each farm and combined dataset (total of 
5 data sets) were plotted by using parallel 
visualization on Xmdv Tool 6.0a, which visualizes 
multivariate data on a 2-dimensional space by 
representing each variable as a ranged bar and 
putting them next to each other.   

Parallel visualization of the combined dataset, 
presented in Figure 1, shows that most of mastitic 
cows have high EcMax, high EcDv but low QYF, 
while relationships between these variables for 
healthy cows are even more distinct. 
 

 
Figure 1.  Parallel visualization of the combined 
data set. Status_ID value of 5.00 represents 
mastitic case and -5.00 represents healthy case. 
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The visualization results are consistent with 
correlation analysis in which NM EcMax and 
EcDv was found to have a positive relationship 
with mastitis status whereas NM QYF had a 
negative relationship with mastitis status. These 
correlation values are 0.49, 0.41 and -0.73, 
respectively. Therefore, the final variables selected 
in the analysis for detection of mastitis were EcDv, 
NM QYF and NM EcMax. Milk temperature was 
not used as a variable for current stage of the 
research due to various reasons, such as the 
distance of the tube between teats and sensors 
affects the milk temperature and, uneven flow of 
milk over the sensor could also cause the milk 
temperature to fluctuate (Gil, 1988). Nevertheless, 
whether the automatically measured milk 
temperature could be helpful in detection of 
mastitis needs be further investigated.  

To remove multi-colinearity and further 
differentiate mastitic cases from non-mastitic cases 
during milking, principle component analysis 
(PCA) was examined for predictive variables in 
classification of healthy and mastitic patterns. 
Kettaneh et al. (2005) find that this method has 
certain ability in reducing overlapping inside 
clusters. 

Figure 2 shows the matrix plots for NM Max, NM 
QYF and EcDv, The plots of PCs against each 
other can be seen in Figure 3. The two figures 
reveal that patterns are slightly less overlapped in 
PC1, PC2 and PC3 data space than in NM Max, 
NM QYF and EcDv data space. Therefore, PCs 
were used instead of original variables in 
developing classifiers as discussed next. 
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Figure 2.  Matrix plot of NM Max, NM QYF and 
EcDv. 
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Figure 3.  Matrix plot of PC1, PC2 and PC3 

The results from the linear discriminant analysis 
shows it has a perfect detection of healthy cows 
with specificity (i.e. the percentage of correct 
identification of healthy quarters) of 100% (1026 
healthy cases), while having problems with 
recognizing mastitic cows. Sensitivity (i.e. the 
percentage of correct identification of mastitic 
quarters) of the model is 0.81 (26 out of 32 
mastitic cases).  Figure 4 clearly reveals the 
performance of the discriminant model: the linear 
discriminant function boundary classifies all the 
healthy cases into one category but also 
misclassifies a few mastitic cases as healthy.  
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Figure 4.  Plot of PC1 vs. PC2 with discriminant 
function boundary superimposed on it. The light 
points represent healthy cases; the dark points 
represent mastitic cases. 

In order to improve the rate of detection of mastitic 
cases, feedforward neural networks (MLP) and 
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SOMs were attempted. Since there is such a low 
mastitis prevalence in the data set, five datasets 
were generated for training MLPs in the following 
way. The original data set was first divided into 
two subsets according to mastitis status of input 
patterns. For MLP models, 16 mastitic input 
patterns and 160 healthy input patterns were 
randomly selected to construct a training set. The 
corresponding test set consisted of 8 mastitic 
patterns randomly selected from the rest of the data 
in the mastitis subset and 250 healthy patterns 
randomly selected from the rest of the data in the 
healthy subset. The validation set has the same 
number of mastitis and healthy patterns as the test 
set but inputs were taken from what was left out 
from the two subsets. This process was repeated 5 
times to obtain different randomly selected subsets 
of training, test and validation data to train 5 
MLPs. The inputs to the networks were the three 
PCs. The performance of the five best trained 
networks to detect the incidence of mastitis in the 
five data sets is listed in Table 1. 

Table 1.  Classification results of the five best 
networks. 
 

Dataset Sensitivity Specificity 

1 0.84 (5 out of 32) 1 

2 0.84 1 

3 0.84 0.99 (659 out of 660) 

4 0.84 1 

5 0.84 1 

The results show the MLPs have a better 
performance than the discriminent model (with a 
slightly improved sensitivity). On visual inspection 
of misclassified mastitic cases in relation to whole 
data, it was found that the misclassified ones are 
those that are closer to the healthy cases. Both 
MLP and discriminant classifier could not classify 
them correctly.  

In order to improve the classification rate of 
mastitic cases, SOM networks of map size 12x12 
were tested. The 3 data sets used for developing  
SOM (Kohonen, 1997) consist of a training set, 
which had 27 randomly extracted mastitic patterns 
and 50 randomly selected healthy patterns, and a 
test set, which had the rest of the mastitis patterns 
and another 50 randomly selected healthy patterns.  
Moreover, the mastitic patterns in the training set 
were repeated to increase the exposure of mastitic 
cases to the network. Each of trained maps was 
validated with all 3 validation datasets described 
earlier. The results from the best map producing 
the highest classification on validation sets are 
shown in Table 2. 

Table 2.  Classification results of the three best 
SOMs. 
 

Dataset Sensitivity Specificity 

1 0.93 0.98 

2 1 0.95 

3 0.93 0.97 

 average = 0.95 average = 0.97 

 
Table 2 shows that SOMs have produced much 
improved classification rate for mastitic cases 
including those that are closer to the health cases. 
The average classification rate for mastitic cases 
(sensitivity) is 95% and the rate for healthy cases 
(specificity) is 97%. Thus the maps have sharply 
differentiated the classes while projecting the input 
vectors onto the map creating an appropriate 
nonlinear boundary between healthy and mastitic 
cases. 
 
The SOM projections of the individual input 
components and health status are shown in Figure 
5. It shows that PC1 projection is very similar to 
health status projection. High PC1 values (darker 
color in the first panel) correspond to mastitc cases 
and darker color in status panel corresponds to 
mastitic cases. 
 
The position of codebook vectors in the inputs 
space is presented in Figure 6. In the figure, darker 
nodes represent mastitic cases and lighter ones 
healthy cases. The figure shows that the neurons 
representing mastitic and healthy cases have been 
clustered properly in the input space. The smaller 
dots represent validation data. 
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Figure 5.  SOM projections with respect to PCs 
and health status. 
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Figure 6.  Codebook vectors of neurons of the 
trained SOM. The dark color nodes correspond to 
mastitic cases and the light color to healthy cases. 

5. CONCLUSIONS 
 

This paper presents the initial part of a study aimed 
at developing an efficient method for on-line 
detection of mastitis in robotic milking stations.  
The preprocessed data for healthy and sick cows 
were used on linear descriminent, MLP, and SOM 
classifiers. MLP results showed only a slight 
improvement over descriminent classifier. The 
MLP classified mastitis cases with 84% accuracy 
whereas classification rate for descriminent 
classifier was 81% for sick cows. Both provided 
100% accuracy for healthy cows. The SOM 
showed much improved classification rate for 
mastitis cases reaching 95%; however, it slightly 
comprises on the accuracy of classification for 
healthy cows with an average rate of 97%. In the 
next stage of study, robustness of SOM will be 
further tested, the approach for making the final 
diagnosis will be refined, and methods for on-line 
map refinement will be investigated.    

6. REFERENCES 
 

Gil, Z. (1988). Milk temperature fluctuations 
during milking in cows with sub-clinical 
mastitis. Livest. Prod. Sci, 20, 223. 

 
Heald, C. W., Kim, T., Sischo, W. M., Cooper, J. 

B., & Wolfgang, D. R. (2000). A 
computerized mastitis decision aid using 
farm-based records: An artificial neural 
network approach. Journal of Dairy 
Science, 83(4), 711-720. 

 
Holmes, C. W., Brookes, I. M., Garrick, D. J., 

Mackenzie, D. D. S., Parkinson, T., & 

Wilson, G. F. (2002). Milk production 
from pasture. Palmerston North, N.Z.: 
Massey University. 

 
Kettaneh, N., Berglund, A., & Wold, S. (2005). 

PCA and PLS with very large data sets. 
Computational Statistics & Data 
Analysis, 48, 69-85. 

 
Kohonen, T. (1997). Self-Organizing Maps 

(Second ed.). Heidelberg, Germany: 
Springer-Verlag. 

 
López-Benavides, M. G., Samarasinghe, S., & 

Hickford, J. G. H. (2003). The use of 
artificial neural networks to diagnose 
mastitis in dairy cattle. Unpublished. 

 
Nielen, M., Schukken, Y. H., Brand, A., Deluyker, 

H. A., & Maatje, K. (1995a). Detection of 
sub-clinical mastitis from on-line milking 
parlor data. Journal of Dairy Science, 
78(5), 1039-1049. 

 
Nielen, M., Spigt, M. H., Schukken, Y. H., 

Deluyker, H. A., Maatje, K., & Brand, A. 
(1995b). Application of a neural network 
to analyse on-line milking parlour data for 
the detection of clinical mastitis in dairy 
cows. Preventive Veterinary Medicine, 
22, 15-28. 

 
Whyte, D., Mein, G., Claycomb, R., & Woolford, 

M. W. (2003). Unmasking mastitis. Dairy 
Exporter, 78(12), 92-93. 

 
Woolford, M. W., Williamson, J. H., & 

Henderson, H. V. (1998). Changes in 
electrical conductivity and somatic cell 
count between milk fractions from 
quarters sub-clinically infected with 
particular mastitis pathogens. Journal of 
Dairy Research, 65, 187-198. 

 
Yang, X. Z., Lacroix, R., & Wade, K. M. (1999). 

Neural detection of mastitis from dairy 
herd improvement records. Transaction of 
the ASAE, 42(4), 1063-1071. 

 
Yang, X. Z., Lacroix, R., & Wade, K. M. (2000). 

Investigation into the production and 
conformation traits associated with 
clinical mastitis using artificial neural 
networks. Canadian Journal of Animal 
Science, 80, 415-425. 

 

278


