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Abstract: Randomized controlled trials are increasingly examining preference data on the minimum benefit
required to make treatment worthwhile. These studies assess patients’ time and probability trade-offs as out-
comes. A comparison is required between two treatment groups, as randomised in the trial. Such data often
has specific features making use of standard tests of group differences inappropriate. These include:

• a ‘zero spike’, a substantial number of patients judging a trivial survival benefit sufficient;

• some patients judging the maximum possible benefit insufficient to make treatment worthwhile;

• a tipping point, i.e. a minimum survival benefit, specific to the patient, making treatment worthwhile, and
which determines the patient’s elicited response;

• grouping of minimum benefit judged sufficient, with outcomes limited to the specific categories (such as “3
months”) offered patients in structured interviews.

Several alternative two-sample tests have been used with such data, but all of them potentially return invalid
P-values because of these features, incompatible with test assumptions. We report on simulation modelling of
the adequacy of bootstrap correction in estimating P-values and power of the alternative procedures.

In simulation studies we demonstrate that underlying continuous latent variable, ordinal discrete survival, and
mixture distribution models can provide the required comparisons. Corresponding test approaches, parametric
and non-parametric, are described. These tests may differ in bias and power. Under models with latent variable
determining preference, our findings are of little bias in nominal P-values of parametric and rank tests consid-
ered. Substantial power differences are demonstrated. The superior choice of test is found to depend on the
form of model alternative considered. Insight into appropriate choice of test is gained from consideration of
location-shift and polarised alternatives.

In particular, the commonly used normal scores and Wilcoxon-Mann-Whitney tests share good performance
under translation shift alternatives. However, these tests exhibit poor power in a sample where responses are
drawn from two distinct distributions. In such heterogeneous samples, permutation t-test and logrank tests
exhibit higher power.

Keywords: Bias, binned counts, grouping, ordinal data, patient preference data, permutation test, power, time
trade-off, rank test, Wilcoxon-Mann-Whitney test.
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1 INTRODUCTION

1.1 Survival trade-off outcomes

In cancer studies, preferences between treatments may depend on trading off discomfort and inconvenience of
treatment for enhanced survival

For example. in a recent study, Blinman et al. (2008), two forms of outcome measure were considered:

• time trade-offs (TTO) – offering extra survival time

• probability trade-offs (PTO) – offering higher probability of survival

To elicit an individual’s TTO and PTO, the minimum survival benefit necessary to make the discomfort and
inconvenience of chemotherapy worthwhile were established. Trial participants who had experienced a full
course of chemo were afterwards asked a series of questions designed to determine survival benefits that would
offset the discomfort and inconvenience of their chemotherapy. The 5 year TTO questions were of the general
form:

Imagine you knew that:
- without chemotherapy life expectancy is 5 years, and;
- with chemotherapy, life expectancy is 5 years and 6 months.
In other words, having chemotherapy would increase life expectancy by 6 months.
Based on your own experiences of chemotherapy, which would you prefer?

The 6 month extra survival benefit quoted is subsequently replaced by lower and higher values, ranging from
1 day to 20 years (and permitting the patient to nominate that no survival gain would suffice), in a carefully
designed sequence of questions. The result is a single survival benefit threshold, the patient’s TTO. A similar
series of questions was used to elicit the TTO with a better prognosis, life expectancy baseline of 15 years, and
further series of questions for PTOs with baseline probabilities of 65% and 85% of survival exceeding 5 years
and 15 years.

In this paper, we address statistical methods for group comparisons of assessed TTOs and PTOs. Since analysis
methods for PTOs are identical to those for TTOs, we restrict attention henceforth to TTOs. We address tests
that have become accepted in the clinical literature, and the power of these methods. We propose alternative
tests that can provide better power to detect differences.

To simplify discussion, and because individual outcomes were strongly correlated for 5 year and 15 year base-
lines, we shall use a TTO summary calculated as the sum of 5 year and 15 year TTO (i.e. twice the mean TTO)
for each patient in Figure 1. The distribution of this aggregate TTO is shown in this Figure.A responses of the
maximum survival benefit offered being insufficient was coded as a TTO of 25 years; identical responses of
insufficient benefit on both 5 and 15 year baselines would lead to an aggregate TTO of 50 years (i.e. an average
25 year TTO) in the Figure.

The Figure makes clear the features leading to statistical difficulties: zero-spike, high level of aggregation in
outcomes, and the skewed distribution with relatively few patients requiring higher survival benefits in order to
make chemotherapy worthwhile. The finding is typical of TTOs determined in earlier studies. In Duric et al.
(2005) 50-70% of women judged a 1% improvement in 5 year survival rates or a 3 month improvement in life
expectancy sufficient to make 4-6 months of adjuvant chemotherapy worthwhile.

1.2 Issues in statistical analysis of survival trade-offs

Consider T, the survival gain required for treatment to be judged worthwhile. There are various analysis per-
spectives for the distribution of T that may be adopted:

• underlying continuous outcome;

• ordinal discrete (survival categories, e.g, 'low-realistic');

• mixture distribution, where models are developed for two distinct groups: women not willing to trade any
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Figure 1: TTO categories and frequencies of outcomes

survival advantage for enhanced quality of life, (so T=0, discrete) and continuous (T>0) outcomes.

For continuous TTO inference, two-sample tests, nonparametric permutation and rank tests are available to
evaluate treatment differences. Specific approaches include t- test, following log-transformation (an ad hoc
approach), permutation t-test, and Wilcoxon-Mann-Whitney and Normal scores (Simes and Coates, 2001) rank
tests.

The transformation of aggregate TTO is important to parametric and permutation tests, while rank tests are
invariant to (monotone) transformation of trade off T. Rank methods require an appropriate method of breaking
ties, which occur frequently because of the categorical nature of assessed response.

Since time trade-offs are elicited in categories (1 month, 3 months, etc.), outcomes form discrete distributions.
Outcome categories can be pre-assigned scores and tests conducted on these scores. A t-test might score TTO,
T , as log(1 + T ), while rank tests use as scores the order statistics under a pre-specified distribution (as with
Normal scores).

For example, consider Figure 2. With a high proportion of women opting for the smallest survival benefit
available, 1 day, the log transformation strongly distinguishes such women from those requiring slightly larger
benefits (e.g. 1 month). This effect was undesirable, given such differences represented a clinically negligible
benefit. The effect is reduced by offset in transformation; we adopted log(1 + T/0.25), where 0.25 years
represents a clinically meaningful survival benefit of treatment.

With zero spike, discrete and skewed distributions, P-values based on standard assumptions or asymptotics must
be in doubt (Kolassa, 1995; Lesaffre et al., 1993). Non-parametric tests, for example, require the assumption
of data with a continuous distribution, for which ties do not occur. Valid P-values may still be obtained, with
some computational effort, by bootstrap resampling of the distribution of the test statistic. For data above,
the precise P-value of a t-test on log-transformed outcomes was estimated in 10,000 bootstrap resamples. The
t-test’s bootstrap distribution tail area, P=0.07 in this instance, may be compared with the nominal P-value,
P=0.07 also, which assumes normal distributions of (continuous) transformed outcomes. The common P-value
is close to statistical significance.

Perhaps surprisingly, rank tests of the difference between treatments in this data, provide much larger P-values,
exceeding 0.5, providing no indication of differences in TTO between these two treatment groups. This too is
an often observed phenomenon, one occurring in previous studies comparing TTOs. Additionally, in a recent
study, Leung (2007) established reasonable consistency of Normal scores, linear regression (untransformed
t-test) and ordinal regression tests of treatment differences. Our aim in this paper is to evaluate the power
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Figure 2: Comparisons by scores of two treatment groups: AC4 (n=57) and CMF (n=21). Displayed by scoring:
(a) logT; (b) log[(T+0.25)/0.25].

of parametric, permutation and rank tests in two-sample simulations under specific alternatives where various
treatment differences occur. We thereby formulate an explanation of when and why differences in power occur,
one that may assist in choice of appropriate tests for TTO (and PTO) data.

2 SIMULATION STUDY

2.1 Approach and methods

A selection of two-sample, permutation and rank tests were considered:

1. permutation t-test on log(1+TTO/0.25) scores;

2. Wilcoxon-Mann-Whitney (rank sum) test, abbreviated as Wilcoxon RS in Tables;

3. Normal scores (rank) test;

4. Exponential scores (Savage rank) test.

All rank test statistics allowed for ties by employing a standard approach using average scores, e.g. using mid-
ranks of tied observations with the Wilcoxon-Mann-Whitney statistic. The approach is commonly used as the
default method for calculating such test statistics in statistical software. It equates to Efron’s method with the
logrank test.

A permutation test compares the value of the test statistic with those for random reallocations of the original
data to the two groups. The permutation distribution of a test statistic serves to assess the significance of the
observed test result. The sampling distribution is that of a random sample, without replacement, from a finite
population of scores. Like a rank test, the test and corresponding P-value are distribution free. Unlike a rank
test, the test statistic changes on transformation of data (recorded scores matter). The permutation distribution
provides a conditional test, applicable even when the parametric assumptions of the t-test may not hold.

Validity of P-values under the null (independent samples from a discrete TTO data distribution) was assessed
using a number of approaches, approximate and exact:

• as reported by standard statistical software, applying tests under inapplicable assumptions;
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Figure 3: TTO distributions in location-shift (on logs, left) and polarised alternatives (right).

• P-values based on asymptotic normality of sampling distribution of scores (Lehmann, 1975);

• P-values obtained using Fisher’s permutation distribution of each sample statistic, a test conditional on the
observed data sample.

The latter were considered to be the gold standard. The exact conditional size (under the null hypothesis)
and exact conditional power (under an alternative), for tests with rejection cutoff determined for nominal sig-
nificance levels given below, using the normal sampling distributions, were estimated by crude Monte-Carlo
method (generation of 10,000 permuted data sets). The method is similar to those discussed in Hilton and
Mehta (1993) and Rabbee et al. (2003).

TTOs in two groups of equal sample size (n=m=50) were generated by grouping log-Normally distributed
random numbers. These two groups correspond to women termed untreated (or controls) and treated. N=10,000
simulation samples were generated, and the empirical distribution of test results recorded.

Under the null, both groups were generated from the same underlying distribution, and the type 1 error level (α)
of each test estimated in simulations at nominal test levels α = 0.1%, 1%, 5% and 10%. Power comparisons
were then conducted for two types of alternative, where TTO increased for treated women.

The first form of comparison was a location-shift alternative to the log-normal distribution of underlying TTO.
This is appropriate when treatment effect is expected to change latent TTO by a common scale factor in all
treated women. The asymptotic power properties (Hajek et al., 1998) of rank tests are derived under location-
shift alternatives of continuous distributions. Observed TTO categories were defined by grouping the latent
log-Normal random numbers in fixed intervals to form the discrete distribution of TTO. Different category
cut-points and shifts in distribution were chosen to match the characteristics of study data.

The second form of alternative (termed polarised) was simulated by specifying the distribution of TTO as a
mixture of those women content with very small survival benefits (as indicated by the randomly generated
TTO) and other women requiring higher benefits, for whom the benefit required under treatment doubled from
that benefit required by a control.

Figure 3 displays histograms of simulated TTO samples in one of N=10,000 simulation replicates. Note po-
larised alternatives retain a similar proportion of women satisfied with negligible benefits, and another group
with much higher TTOs, leading to U-shaped distributions of TTO in the treated group.
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Table 1: Rejection rates under the null versus nominal significance
Equal sample sizes Effect: NULL
N=100 Rejection rate
Test % % % %

α-level 0.1 1 5 10
% % % %

Wilcoxon RS 0.06 0.92 5.0 9.9
Normal scores 0.07 0.90 5.0 9.9

(unconditional) 0.10 0.98 5.0 9.8
Logrank (exponential scores) 0.08 1.00 4.7 9.5
t-test (permutation) 0.02 0.69 4.7 9.8

(unconditional) 0.02 0.70 4.6 9.7

Table 2: Power under two alternatives: Location Shift alternative (left); Polar alternative (right)

Equal sample sizes Effect: SHIFT 0.5*SD
N=100 Rejection rate*
Test % % % %

α-level 0.1 1 5 10
% % % %

Wilcoxon RS 14 36 62 73
Normal scores 14 37 63 74

(unconditional) 15 38 63 74
Logrank (exponential scores) 13 32 57 68
t-test (permutation) 6 25 50 63

(unconditional) 7 25 50 63
*N=10000 replicated data sets

Equal sample sizes Effect: POLARISE 2.0*SD
N=100 Rejection rate*
Test % % % %

α-level 0.1 1 5 10
% % % %

Wilcoxon RS 0.6 5 15 24
Normal scores 1.2 8 22 32

(unconditional) 2 8 22 32
Logrank (exponential scores) 5 21 43 57
t-test (permutation) 6 25 50 63

(unconditional) 10 36 63 75
*N=10000 replicated data sets

2.2 Results

Type 1 error rates

The results of Table 1 compare α-levels of various tests, both conditional on the observed sample (Fisher’s
permutation approach) and unconditional. Conditional and unconditional P-values were found to be similar, as
expected in large sample asymptotics. We note little evidence that the skew distributions and aggregation of
continuous latent TTOs biased the nominal significance reported by standard statistical software. If anything,
tests appear a little more conservative than their nominal level. This finding permits powers of tests to be
calculated and compared using nominal assessment of significance.

Power

Power for a location shift alternative and polarisation alternative are provided in Table 2. The powers achieved
for the sample sizes and alternatives simulated are moderate, reaching a little over 50% for tests conducted at
level α = 0.05, and up to 75% at level α = 0.10. However, interest lies in the substantial differences in power
of different tests. While slightly less powerful against the shift alternative, logrank and t-tests substantially
outperform more commonly used Wilcoxon rank sum and Normal scores tests.

3 CONCLUSIONS

We found nominal type 1 error rates (based on finite sample asymptotics) to be reliable for survival TTO data.
Commonly used methods, the normal scores and Wilcoxon-Mann-Whitney tests, share good performance under
translation shift alternatives. However, they exhibit poor power in heterogeneous groups, relative to permutation
t-test and logrank tests. Heterogeneity may result from a mixture model in which sample responses are drawn
from two distinct distributions. With such data, permutation t-test and logrank tests exhibit higher power.
This finding, and the comparison with existing studies, supports further application of these tests and mixture
model analysis, to better evaluate treatment effects on TTO distributions with zero-spike. Ad hoc analysis, by
unconditional t-test after transformation by log(1+TTO/0.25), has also been found to be unbiased and powerful.

We have restricted reporting, given limitations of space, to two instances of the location-shift and polar alter-
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natives and to the case of equal sample sizes. In these instances providing data with zero-spike from a mixture
distribution, we demonstrated that commonly applied tests have poor power with heterogeneous TTOs. Future
work will concentrate on extending the scope of the simulation study, evaluating power properties of tests in
other polar and mixture model alternatives. In an accompanying paper, we plan to provide further comparisons
of various approaches to computing rejection rates, evaluating the accuracy of efficient asymptotic methods in
this context.
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