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Abstract: In this work we have developed a general and fully three-dimensional numerical strategy for 
simulating electrochemical systems on irregular domains with moving boundaries.  This involves solving the 
governing partial differential equations with algebraic constraints in the bulk electrolyte which are stiffly 
coupled to an active surface where chemical reactions and other physical processes occur. Our method makes 
only a few assumptions about the active surface, namely that it is driven by the bulk chemical species 
concentrations and applied potential and that it produces a flux of each species back into solution. Otherwise, 
the details of the surface model are of little consequence. The particular application we study here is copper 
electrodeposition as applied to filling trench/via interconnects in computer processors. 

To summarize, our computational method for the bulk electrolyte region splits the three distinct physical 
phenomena that occur into fractional time steps. The homogeneous reactions and diffusion are handled with 
backward Euler discretization to treat stiffness, while the electrical migration is treated with a projection step 
which satisfies the charge neutrality constraint exactly.  Spatial discretization is performed using the finite 
volume method, which conserves species mass exactly and retains second order spatial accuracy, even near 
the irregular boundary. A nonuniform grid region above the active surface is used to resolve the diffusion 
boundary layer that is about two orders of magnitude thicker than the trench dimensions. The level set 
method is adopted to move the interface, but modified to prevent the degradation of accuracy that can result 
from the first order accurate fast marching method.  The closest point algorithm is used to reconstruct the 
interface with second order accuracy before redistancing is performed. To couple the bulk electrolyte and 
active surface regions, we developed a semi-implicit coupling method that handles the stiff coupling problem 
robustly and efficiently. 

With numerical experiments, we found that the CPU times scale as a small power of the problem size, 
approximately 1.15. Direct comparison of our method's efficiency with existing numerical strategies for 
trench infill revealed that our method can compute in about 30 minutes what previously took 8 hours.  In 
addition, previous methods scaled very poorly with grid refinement, with a power law approximately 2.0, and 
were not second order accurate near the moving boundary.  For the first time to our knowledge, fully three-
dimensional time varying simulations of multi-component electrochemical systems are now feasible on a 
desktop computer, albeit at modest resolutions. We note that higher resolution could be made feasible by 
parallelizing the algorithm, which we are currently pursuing. 

Finally, we applied our coupled bulk-surface algorithm to study the infill of a three dimensional via.  We 
found that our method is able to predict the superfilling phenomenon seen experimentally with a careful 
balance of solution additives, as well as some subtle details of the infill characteristics. 
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1. INTRODUCTION 

Electrochemical processes are widely used throughout industry.  Applications include batteries, fuel cells, 
photovoltaics, application of coatings onto metals and fabrication of interconnects in computer processors.  
Generally such processes involve electrolytic solutions containing various ions and additives interacting with 
conducting surfaces on which chemical reactions and various physical processes occur.  These surface 
processes either produce a voltage difference or are induced by an applied voltage difference between the 
surface and electrolyte solution.  Although the fundamental equations describing the bulk electrolyte solution 
are well known, the surface chemistry and dynamics are often less clear and subject to modeling trial and 
error.  We have developed a highly efficient algorithm that solves the governing equations for the bulk while 
allowing the user to include his or her particular surface model with relative ease. 

Here we describe our algorithm for simulation of electrochemical systems on three-dimensional, irregular 
domains with moving boundaries.  We give particular attention to the coupling of the dilute electrolyte model 
of the bulk to the surface dynamics model on the moving boundary.  Our method uses finite volume 
discretization of the arbitrarily shaped spatial domain.  The resulting differential algebraic equation system is 
solved with a time splitting method that involves a projection step used to satisfy the algebraic constraints.  
We illustrate the power of our method by applying it to the challenging problem of simulating 
electrodeposition of a copper via structure.  We will show that simple, intuitive strategies for coupling the 
surface and bulk models fail, resulting in unstable simulations unless the time step is reduced well beyond the 
point of computational feasibility.  The active boundary and surface variables are advected using the level set 
method, but modified with the closest point algorithm to prevent the degradation of accuracy that can result 
from the first order accurate fast marching method. 

It is important to emphasize that to date very few three-dimensional simulations of realistic models for 
copper electrodeposition have been performed.  Three-dimensional simulations are essential for studying 
problems such as copper nucleation and growth dynamics on resistive metal substrates, and for studying the 
process of copper infill of via interconnect structures in computer processors. Figure 1 illustrates such a 
system.  In this figure we see that the via consists of a trench shaped region 20-200 nm in width and around 
5:1 to 15:1 aspect ratio. At the bottom of the trench a tapered cylinder is bored out (used to connect to a 
lower layer of interconnects on a computer processor). The region above the trench consists of dilute 
electrolyte solution (bulk) and forms a mass flux boundary layer.  At the top of the layer (10-100 μm), the 
solution is well mixed. It has a fixed far-field composition represented by a Dirichlet boundary condition. 

This paper is organized as follows.  In Section 2 
we give a brief description of the governing 
equations, including the active surface. In Section 
3 we discuss the numerical method, with particular 
attention given to the surface/bulk model coupling. 
In Section 4 we give the results of a series of 
numerical experiments that test the algorithm's 
accuracy and efficiency. Finally, in Section 5 we 
illustrate the method by simulating the fully three-
dimensional copper infill of a via. 

2. GOVERNING EQUATIONS 

2.1. Bulk Electrolyte 

The dilute electrolyte in the bulk is modeled by the 
mass flux given by Nernst-Planck Equation with 
homogeneous reaction source terms plus 
electroneutrality. These equations describe the 
time evolution of the concentrations of each 

chemical species, sc , 

( )'{ }s
s s s

c
R c N

t

∂ = − ∇ ⋅
∂

 
 

where sR  is the net rate of production of chemical 

 

Figure 1.  Illustration shows the shape and dimensions 
of the via physical domain.  The governing physics are 
also indicated for the different regions. 
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species s due to chemical reactions, and is a function of all the other chemical species concentrations, sc . 

The flux, sN


, of chemical species s to due to diffusion and electric field migration is given by  

s s s s s sN D c Fz u c= − ∇ − ∇Φ
  

,  

where Φ  is the electric potential, sD is the diffusion coefficient for species s, sz is the charge of species s, 

s su D RT= is the mobility constant for species s, and F is Faraday's constant. The algebraic constraint 

enforces zero net charge density for the electrolyte solution. 

2.2. Active Surface 

Our computational framework is quite general and can accommodate a variety of different types of surface 
models.  Included are fully stochastic Kinetic Monte-Carlo models, fully deterministic mean field models, as 
well as hybrid approaches that treat important events (such as copper nucleation) stochastically but 
everything else deterministically. For electrodeposition into a via, we will be using an ordinary differential 
equation model. In such a mean field model, we have a set of adsorbed surface species, {ss}, each having a 

(constant) molar surface density ssΠ  and fractional surface coverage ssθ , satisfying 1ss
ss

θ = . 

Mass conservation on the moving, reacting surface is represented by the reaction-advection equation, 

surf
ss ss

n ss
ss

R
v

t

θ κθ∂ = −
∂ Π

, 

where surf
ssR  is the net production rate of surface species ss due to surface reactions, 

nv v n=


 is the interface 

velocity and κ  is the interface curvature. Additional details of this surface model can be found in the 
references. 

3. NUMERICAL SOLUTION 

3.1. Bulk Electrolyte 

Temporal discretization is accomplished via a splitting technique that uses the Implicit Euler method 
combined with a projection step.  The basic idea is as follows.  First, we perform a finite volume 
discretization over the spatial domain. For this, we consider the most complex case: a cell that is cut in an 
arbitrary way by the active (moving) boundary.  From this we obtain an equation of the form: 

, , ( ) ( ) ( ) ( , ) ( , )
, ,

( )
( ) ( ) ( ) ( ) ( )s i j krel rxns diff mig flux c flux

i j k

d c
V RHS RHS RHS RHS RHS

dt
Φ= + + + + , 

where , ,( )s i j kc  is the concentration of chemical species s at the centroid of cell (i,j,k), while ( )( ) rxnsRHS , 

( )( ) diffRHS , ( )( ) migRHS , ( , )( ) flux cRHS  and ( , )( ) fluxRHS Φ  are the cell-integrated reaction, diffusion, 

migration and boundary flux (diffusion and migration, respectively) terms. 

The right hand side of the species conservation of mass equation is then split into three sets of terms: 1) 
reaction terms, 2) diffusion terms (plus diffusion boundary flux terms), and 3) migration terms (plus 
migration boundary flux terms), as indicated by the superscript. To advance the concentration fields, 

, ,( )s i j kc , from time nt  to 1n nt t t+ = + Δ , two intermediate values, 
(*, )

, ,( )
rxns

s i j kc and 
(*, )

, ,( )
diff

s i j kc , are calculated 

using Backward Euler discetization. Schematically, we do the following: 

( ) (*, ) (*, ) (*, 1)
, , , , , , , , , ,( ) ( ) ( ) ( )n reactions rxns diffusion diff projection migration n

s i j k s i j k s i j k i j k s i j kc c c c +→ → → → → → Φ → →  
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By projection, what is meant is that , ,i j kΦ  is computed such that after migration, the charge neutrality 

constraint is satisfied at every solution-containing cell center.  Solving for , ,i j kΦ  requires the solution of an 

elliptic Poisson-like equation. 

The diffusion step and projection step require solution of nearly symmetrical linear equation systems, with 
asymmetrical terms appearing along the irregular boundary.  These equation systems are solved easily and 
efficiently using Sparsekit2.  We note that similar discretizations have been used to solve the heat and 
Poisson equations on irregular grids. 

3.2. Coupling Algorithm 

The bulk electrolyte and surface models are coupled by the fluxes, { }'sJ , and bulk electrolyte 

concentrations and potential at the surface, { }' ,sc Φ . The fluxes are output from the surface reaction code 

and provide boundary conditions to the bulk electrolyte code, while the concentrations and potential are 
output from the bulk electrolyte code and act as parameters in the surface reaction code.  In our work, we 
explored three different approaches for coupling the codes: explicit coupling, fully implicit coupling, and 
semi-implicit coupling. Explicit coupling and fully implicit coupling were unable to solve our problem 
efficiently, so we had to resort to a less intuitive semi-implicit coupling method, which we explain in more 
detail. 

To aid in the discussion, we introduce the following notation. Define one iteration of the surface code 

(reactions only) to be ( )1 2,F F F= , 

( )
( )

( 1) ( )
1

( 1) ( )
2

,

,

n n

n n

F c

J F c

θ θ

θ

+

+

=

=
 

Here, the bulk concentration (and potential) c may be regarded as a constant parameter during the integration 

window [ ],n nt t t+ Δ . Similarly, we define one iteration of the bulk code to be G , 

( )( 1) ( ) ,n nc G c J+ =  

This time, the active boundary flux  J  is regarded as the constant parameter. 

3.2.1 Explicit and Fully Implicit Coupling 

Using the notation introduced above, explicit coupling is written as  

( )
( )

( )

( 1) ( ) ( )
1

( 1) ( ) ( )
2

( 1) ( ) ( 1)

,

,

,

n n n

n n n

n n n

F c

J F c

c G c J

θ θ

θ

+

+

+ +

=

=

=

 

Examining the system Jacobian, we find that explicit coupling will be unstable if the time step size is greater 
than the fastest surface reaction timescale. This is a very severe restriction and renders the method infeasible 
for all but the most trivial systems. 

In contrast, fully implicit coupling is given by 

( )
( )

( )

( 1) ( ) ( 1)
1

( 1) ( ) ( 1)
2

( 1) ( ) ( 1)

,

,

,

n n n

n n n

n n n

F c

J F c

c G c J

θ θ

θ

+ +

+ +

+ +

=

=

=
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Although the system Jacobian is actually stable, the difficulty lies in solving for ( 1)nc +  in an efficient way.  
We designed an iterative method that would converge within a few iterations most of the time, but was not 
robust.  Other times the iterations would only converge if the time step size was reduced beyond 
computational feasibility. 

3.2.2 Semi-implicit Coupling 

Semi-implicit coupling attempts to capture the best features of explicit coupling and fully implicit coupling. 
The fact is it does even better than that.  It is more stable and robust than fully implicit coupling, but every bit 
as efficient per time step as explicit coupling. Semi-implicit coupling solves the following equations at each 
time step: 

( )
( )

( )

( 1) ( ) ( )
1

( 1) ( ) ( )
2

( 1) ( ) (*)

,

,

,

n n n

n n n

n n

F c

J F c

c G c J

θ θ

θ

+

+

+

=

=

=

 

Here, (*)J  is the semi-implicit flux given by the mixed time step expression 

(*) ( ) ( ) ( 1)n n n
s s s sJ cα β += + , 

where α  and β  are functions of θ  and c . 

The expression for (*)
sJ  uses the fact that sJ  is linear in sc .  In other words, both sα  and sβ  are 

independent of sc .  This linearity assumption holds in our model since surface reaction rates are proportional 

to bulk concentrations with constant rest potentials for Faradaic reactions.  Furthermore, they are trivial to 

compute in terms of the flux function 2F , 

( )
( )

( ) ( ) ( ) ( )
2

( ) ( ) ( ) ( ) ( )
2

,

, 1

n n n n
s s

n n n n n
s s s s

F c c

F c c

α θ

β θ α

= −

= − + −
 

Thus, ( )n
sα  is calculated by computing the flux function 2F  with 0sc = , and ( )n

sβ  is calculated by 

computing the flux function with 1sc =  and subtracting ( )n
sα .  Although linearity does not hold for more 

refined surface models, we can modify this approach by allowing ( )n
sβ  to have sc  dependence.  We have 

done this successfully for rest potentials with c  dependence (Nernst correction). 

The linear decomposition of sJ  with respect to sc  is precisely what gives this method its high 

computational efficiency.  Recall from Section 3.1 that the active boundary flux terms are included in the 
diffusion step of the bulk splitting algorithm.  In that step, we solve a separate linear system for each bulk 

species, s. Since our expression for (*)
sJ  is linear in sc , the implicit part ( ( ) ( 1)n n

s scβ + ) may be readily 

incorporated into the linear system and solved at little or no extra computational expense. 

Examining the system Jacobian shows more clearly why this method works. The implicit part of the flux 
containing the stiffest terms appears in an inverse matrix, which provides stability.  This strategy may also be 
regarded as a highly efficient approximation to the fully implicit Jacobian. 

4 NUMERICAL TESTS 

4.1  Accuracy 

We tested the accuracy of our coupled models using the full additive surface reaction model, described in the 
references.  The domain shape was a nearly fixed trench shape (180nm width, 5:1 aspect ratio and 50 μm 
boundary layer) and was run for 0.5 seconds (during the initial system transient). A total of four 
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computational grids were used, with 2t xΔ Δ  fixed.  The resolutions and fixed time step sizes are given in 

Table 1. 

The coarser grid solutions (grids 1, 2 and 3) were 
compared to grid 4 by averaging the grid 4 numerical 
solutions over 8 x 8, 4 x 4 and 2 x 2 sub-grid squares, 
respectively. Errors were computed using the 
following definition for the error in species s, 

( )
( )

, , ,

( )
, ,

max ( ) ( )

max ( )

exact
i j s i j s i j

s L exact
i j s i j

c c
E

c∞

−
=  

 

The actual data is not included for brevity, but rather 
is discussed.  The first observation is that there is a 
large difference in the accuracy of the most to least 
accurate species. This is because some species change 
very little relative to their far-field concentration and 
reach a steady-state quickly.  In addition, species with 
small flux to diffusivity ratios tend to be computed 
more accurately, which is the result of small, well-
resolved gradients near the active boundary.  On the 
other hand, species that are not present as additives 
but are generated by fast surface reactions and 
consumed equally quickly tend to have more complex 
spatial concentration distributions and are more 
difficult to resolve, making them subject to larger 
numerical errors.  We also observe that the numerical 
errors in some species converge slightly slower than 

the expected  ( )2O xΔ .  The large flux creates a 

sharp boundary layer in these species near the active 
boundary during the transient that is difficult to 
resolve with our uniform grid spacing. 

4.2   Efficiency 

Here, we measure the efficiency for both a 2D and 3D 
problem (using semi-implicit coupling).   

First, we consider the trench shaped domain in 2D.  
CPU time versus problem size is shown in Figure 2.  
Actual CPU times for entire simulations are shown in 
Table 2. The scaling complexity of our method is 
excellent. With optimal complexity scaling being 

( )1.0
eqnsO N , our coupled method scales as 

( )1.14
eqnsO N .  We note that this is a huge 

improvement over previous methods, that scaled 

approximately as ( )2.0
eqnsO N .  Most of our 

simulations are run on Grid 2, requiring a total CPU 
time of about 5.5 hours running on a single core of a 
3.2Gz Pentium 4 processor.  We note that we can 
perform entire numerical simulations on Grid 1 in 
about 37 minutes. This is remarkable since we 
verified that this grid yields good qualitative 
accuracy.  As a point of reference, previous methods 

Grid no. Uniform 
region res. 

Time step, tΔ  
(seconds) 

1 20 x 50 4.0 x 10-3 

2 40 x 100 1.0 x 10-3 

3 80 x 200 2.5 x 10-4 

4 160 x 400 6.25 x 10-5 

Table 1.  Grid resolutions and time step sizes for 
coupled models, short timescale tests. 

 

Grid no. CPU time per 
time step 
(seconds) 

Total CPU 
time 

1 0.056 37 min. 

2 0.198 5.5 hr. 

3 1.24 5.7 days 

4 6.30 117 days 

Table 2.  CPU time (P4 - 3.2 GHz) data for 2D 
trench problem. 

 

Grid no. CPU time per 
time step 
(seconds) 

Total CPU 
time 

1 1.28 8.9 hr. 

2 13.7 15.9 days 

3 150 1.9 years 

4 1559 79 years 

Table 3.  CPU time (P4 - 3.2 GHz) data for 3D via 
problem. 

 

Figure 2.  Efficiency of the coupled simulation for 
2D trench problem. 
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using even coarser grids took 7-8 hours. This is a 15-
fold increase in computational efficiency that only 
gets better as the grid is further refined! 

Next, we measured the efficiency for the 3D problem.  
The computational complexity is plotted in Figure 3 
and the CPU times for entire simulations are given in 
Table 3. Note that the last two simulations were not 
performed in their entirety but instead were solved for 
a few time steps and the timing results were obviously 
extrapolated.  The complexity scales about the same 
as for the 2D trench problem, but the overall constant 
of proportionality is about four times larger for the 3D 
problem.  This can be attributed to the extra couplings 
of the unknown variables, making the linear solvers 
less efficient, as is observed by the increased number 
of iterations required for convergence. It is clear from 
the total simulation time that highly resolved 3D 
simulations are out of the question at this point. 
However, from the results of Section 4.1.3, we don't 
actually have to use highly resolved grids to make 
qualitatively accurate predictions.  One way we can 
envision to improve the efficiency is to parallelize the 
linear solvers.  We conclude this section by noting 
that our semi-implicit algorithm has been stable and 
robust for all the surface model parameters that we 
have tested. 

5. APPLICATION TO 3D VIA INFILL 

In this section, we consider the infill of a three-
dimensional via consisting of a 2D trench with a 
tapered cylinder extending down from the trench 
bottom.  The trench width is 180nm with 5:1 aspect 
ratio, and the cylinder diameter is 90nm with 1:1 
aspect ratio. These geometries are often used in 
computer processor chips to connect one level of 
interconnects to the next lower level. The surface 
chemistry mechanism used is described in detail in 
the references, but may be understood as follows. 

Two suppressor additives ( Cl−  and PEG ) and one 

accelerator additive ( SPS ) are included in solution 

in addition to the basic 4CuSO  salt plus acid 

2 4H SO  cocktail required for electrodeposition. 

 

Figure 3.  Efficiency of the coupled simulation for 
3D via problem. 

 

 

Figure 4.  Via infill contours perpendicular (left) 
and parallel (right) to the trench axis are plotted at 1 
sec. intervals for first 10 sec. followed by every 2 
sec. 

The infill profiles are plotted along the two planes of symmetry. Figure 4 shows infill contours along the 
plane perpendicular and parallel to the trench and through the cylinder's diameter.  The simulations reveal 
that the small cylinder initially begins to fill conformally. As it fills, the deposition rate near the cylinder axis 
rapidly increases, leading to the formation of a large hump at the trench bottom.  The hump then spreads out 
(more so along the trench axis) as the trench section starts to fill. The trench then continues to fill from the 
bottom up, a phenomenon referred to as superfilling, which is caused by the adsorbed layer of accelerator 
species that promotes copper deposition and preferentially adsorbs at bottom. 
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