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The state of a non-relativistic gravitational dynamical system is known at any time t if the dynamical rule, i.e.
Newton’s equations of motion, can be solved; this requires specificatio of the gravitational potential. The
evolution of a bunch of phase space coordinates w is deterministic, though generally non-linear. We discuss
the novel Bayesian non-parametric algorithm CHASSIS that gives phase space pd f f (w) and potential Φ(x) of a
relaxed gravitational system. CHASSIS is undemanding in terms of input requirements in that it is viable given
incomplete, single-component velocity information of system members. Here x is the 3-D spatial coordinate and
w = x + v where v is the 3-D velocity vector. CHASSIS works with a 2-integral f = f (E, L) where energy
E = Φ+v2/2, v2 =

∑3
i=1 v2i and the angular momentum is L = |r ×v|, where r is the spherical spatial vector. Also,

we assume spherical symmetry. CHASSIS obtains the f (·) from which the kinematic data is most likely to have
been drawn, in the best choice forΦ(·), using anMCMC optimiser (Metropolis-Hastings). The likelihood function
L is define in terms of the projections of f (·) into the space of observables and the maximum in L is sought
by the optimiser. The recovered solutions can be susceptible to large uncertainties given the dimensionality of
the domain of the unconstrained f (·) and the typically small, observed velocity samples in distant astrophysical
systems. This scenario is tackled by assuming f = f (E), i.e. we assume the phase space to be isotropic.
However, this simplifying assumption of isotropy is addressed by undertaking a Bayesian test of significanc that
is developed to be used in the non-parametric context.

A test based on the p-value estimates of the goodness of isotropy in the data was previously undertaken
(Chakrabarty & Saha 2001). However, p-values are sensitive to sample sizes and obfuscate interpretation of
analyses of differently sized kinematic samples. Thus, a Bayesian formalism is a better alternative, eg. Fully
Bayesian Significanc Test or FBST (Pereira & Stern 1999, Pereira, Stern &Wechsler 2008). The null hypothesis
that we aim to test, is that the data are drawn from an isotropic f (·), i.e. H0 : f̂ = Ψ[E(v2/2+Φ(r))] where the data
are drawn from f̂ andΨ is some function: Ψ > 0 for E < 0 andΨ = 0 otherwise. Within FBST, the evidence value
(ev) in favour of H0 is obtained by firs numerically spotting the most likely configuratio (θ∗) that is compatible
with H0 and then findin the volume of the tangential set T by numerical integration. Here T is the set of all
configuration with posterior probability in excess of that of θ∗. We have developed the implementation of this
scheme in the non-parametric context; in CHASSIS, the confi urations are f (E) andΦ(r). To have configuration
obeying H0, we perform sampling from the f (E) − Φ(r) pair identifie upon convergence of a run of CHASSIS.
From this sampling, the resulting f (E)−Φ(r) configuratio corresponding to the highest L is compared to all the
other f (E) − Φ(r) pairs, in order to obtain a measure of the volume of T .

We discuss two distinct applications of the isotropic version of CHASSIS. In one, 2 distinct kinematic data
sets of 2 distinct types of members of an example galaxy are analysed by CHASSIS under the assumption of
isotropy. The f (·) and Φ(·) recovered from runs done with the two data sets are identifie as distinct. Given that
the same galaxy cannot be described by two different gravitational potentials, the risk involved in the very method
of extracting the galactic potential from kinematic data of individual galactic members is demonstrated here for
the firs time. The goodness of the assumption of isotropy, given the 2 data sets, is quantifie by our Bayesian
test of hypothesis.

In the second application, it is shown that once the amount of gravitational matter inside a fiduciar radius
is pinned down from independent measurements, the recovered Φ(·) is unique, irrespective of the toy f (·), from
which kinematic data samples are drawn as input for CHASSIS, as long as velocity dispersion values are mea-
sured at 1 or more different locations in the system. This consistent nature of Φ(·) is arrived at, notwithstanding
varied forms for the assumed toy f (·), including isotropic as well as E & L dependent forms.

Keywords: Bayes theorem, Bayesian significanc test, Astrophysical applications.
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1 Introduction

The complete characterisation of a gravitationally bound, non-relativistic dynamical system can be undertaken
with the help of f (w, t) - the pd f of phase space W - and the gravitational potential Φ(x); here t is time and
w = x + v, where x represents the spatial coordinates and the velocity vector is v = ẋ. A sample of phase space
coordinates can be drawn from f (·) and allowed to evolve in Φ(·), in accordance to Newton’s laws. In this way,
the evolution of the system is deterministic at any time t, though non-linear in general. Hence, we aim to estimate
f (·) and Φ(·); we focus on the characterisation of astrophysical systems in this paper. A related aim is to derive
the distribution of the total gravitating matter from the estimated Φ(·), while keeping in mind that such total mass
is accounted for only partly by luminous matter while the greater fraction is dark matter in these systems.

Conventionally,

• f (·) and Φ(·) are almost always parametrically described. However, given that astrophysical systems such
as galaxies are more likely to manifest complexity in their dynamics than otherwise, any smooth parametric
description of such systems is erroneous.

• mass determination is typically pursued via observed photometric or luminous information though no func-
tional dependence of the total (luminous+dark) matter content on such measurements exist.

• inhomogeneities in the measurement errors notwithstanding, goodness-of-fi parameters are often invoked
to seek the solution. For galaxies, measurements are typically noisy and such goodness-of-fi parameters
can be artificiall inflate (Bissantz & Munk, 2001).

All these issues suggest a better - preferably, a nonparametric - route to f (·) and Φ(·) determination. It is such a
novel, data driven characterisation of real (as distinguished from simulated) astrophysical systems that CHAS-
SIS offers, using the few kinematic measurements that are typically available. Importantly, we test the chief
assumption of our algorithm using a test of significanc that is developed in this regard.

As motivated above, we discard all photometric information that may be available for a system at hand and
use the kinematic information that is sometimes available, namely velocities along the line-of-sight (LOS) of
individual system members, (such as stars). We defin the galaxy such that the x1 − x2 coordinate system spans
the plane-of-the-sky (POS) and the LOS is along the z-axis. Thus, our data comprise 1-component v3 values of
individual galactic members and their POS coordinates. We also account for the errors in v3 measurement. The
observed data samples often bear . 100 data points. These data are input into the Bayesian algorithm CHASSIS
(Chakrabarty & Saha 2001, Chakrabarty & Portegies Zwart 2005).

2 CHASSIS

CHASSIS helps constrain Φ(·) and f (·) of galaxies, given the data u (say). Actually, within CHASSIS, we
constrain the gravitational matter density ρ(·) rather than Φ(·), where Poisson equation connects ρ(·) and Φ(·) as
in:

Φ(x) = −4πG∇2ρ(x) (1)

This helps to avoid problems about negative ρ(·). The calculation of Φ(·) from ρ(·) is undertaken at every step.
Dynamical theory tells us (Dubrovin, Fomenko & Petrovich, 1990):

f = f [Ki(w)], where K̇i = 0 ∀i = 1, 2, 3 . . . . (2)

i.e. Ki is an integral of motion. Now, we realise that the size of the data u is small to moderate and typically
bears no more information other than a single component of velocity. In such a case, we feel that the data are
not sufficient to constrain the extended forms of f (·) and Φ(·). In other words, we resort to making assumptions
about f (·) and Φ(·).

In fact, we assume Ki ,constant, only for i = 1, 2. Thus, f = f [K1(w),K2(w)] where K1 ≡energy E of the
galactic particle and K2 ≡ the angular momentum or L. Here E =

∑

j v2j/2 + Φ(x) and L = |r × v| where r is the
spherical radius and v is the 3-D velocity vector:

∑

j x2j = r2, v2 =
∑

j v2j . We also assume radial symmetry in the
potential, i.e. Φ(x) = Φ(r). Thus, the particle energy is E = v2/2 + Φ(r). In this geometry, the Poisson equation
(Equation 1) is solved numerically by assuming the mass to be stratifie on spherical shells. In other words, the
relevant radial range is discretised and over each radial bin, ρ(r) is held a constant.

In this background, we seek
Pr( f , ρ|u) ∝ Pr(u| f , ρ) Pr( f , ρ) (3)
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where the only constraints posed by the priors are physically realistic requirements of positivity and monotonicity.
This owes to the fact that in general, we do not possess any other prior information that could help constrain the
forms of the sought functions. Thus,

Pr( f , ρ) = Pr( f ) Pr(ρ), where

Pr( f ) = 1 if f ≥ 0 ∨ ∂ f
∂E

∣

∣

∣

∣

∣

∣

L

≤ 0

= 0 otherwise

Pr(ρ) = 1 if ρ ≥ 0 ∨ dρ
dr
≤ 0

= 0 otherwise (4)

We adopt the above priors and estimate the f (·) from which the data u is most likely to have been drawn, in
the estimated Φ(·). This is done by iterating towards the most likely set of { f (·), ρ(·)} starting with an arbitrarily
chosen seed. At every step, the current choice of f (·) is projected into the space of observables (spanned by
x1, x2, v3); a ready definitio for the likelihood function L is in terms of the projection η(·) of f (E, L).

ηi(xi
1, x

i
2, v

i
3) =

∫

f [E(v,Φ(r)), L] dx3dv1dv2 and

L =

Ndata
∑

i=1
log ηi (5)

where xi
1, x

i
2, v

i
3 is the ith data point in the Ndata sized data sample.

The numerical implementation of a trial f (·) function, at a trial (ρ(·) or)Φ(·) is the crucially important question
from the point of view of algorithm design. We do this by discretising the E−L space and holding f (·) a constant
(= fcell) over a given E − L cell. The contribution to η(·), from this E − L cell - define by say, E ∈ [E1, E2], L ∈
[L1, L2] - is given as:

ηcell
i = fcell

∫

dx3dv1dv2 and

ηi =
∑

cell

ηcell
i (6)

Let the integral on the right hand side of the former of these two equations be A. Then, we seek the mapping
A :−→ E − Lspace.

In order to establish this, firs we determine the 2-D area of intersection between the locii of E = E1, E = E2,
L = L1, L = L2, in the v1 − v2 space. This gives the connection between the E − L cell at hand and v1, v2.
Mapping x3 to this cell requires knowledge of the minimum and maximum values of x3 that are allowed in
the cell, given the data point xi

1, x
i
2, v

i
3. This maximum value is

√

r20 − (x
i
1)2 − (x

i
2)2 where r0 is the solution to:

E2 = v23/2 + L2/2r20 + Φ(r0). The minimum x3 is 0.
This explains the background to the structures of ρ(·) and f (·).

2.1 ρ-histogram and f -histogram

The representation of f (E, L) over the discretised E − L space, is akin to a 2-D histogram. Similarly, the ρ(r)
structure is represented as a 1-D histogram. These histograms are updated at the beginning of every step, while
maintaining positivity and monotonicity.

The jump distribution we use is discussed below. If in step k, for r ∈ [rq−1, rq] (∀q = 1, . . . ,Nr, r0=0),
ρ(rq) = αk

q, then in the k + 1th step:

αk+1
q = αk

q+1 + (α
k
q − αk

q+1) exp
(

R
s1

)

(7)

where R is a random number with R ∈ [−0.5, 0.5] and s1 is an experimentally optimised scale that determines
the scale over which the shape of the ρ-histogram is changed. This updating is done ∀q. Once the shape of the
ρ-histogram is updated in this way, the whole structure is scaled by the factor exp(R/s2) where s2 is another scale.
The f -histogram is similarly updated in shape and subsequently normalised.
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2.2 Optimisation

Once the histograms are updated, we project the current f (·) over an E − L cell, into the space of observables,
for the ith data point and then sum over all such cells to get ηi (Equation 7). This is done ∀ i, to obtain L
(Equation 6). The global maxima in L is sought by the Metropolis-Hastings algorithm (Metropolis et. al 1953,
Hastings 1970, Chib & Greenberg 1995). Anticipating the likelihood distribution to be multimodal, we work with
highly dispersed seeds to initiate several chains (Gelman & Rubin 1992) as well as employ simulated annealing
on a single chain. The latter approach, though perhaps less obvious, is one that we fin very effective in test runs.

While the optimisation routine is hard-wired within CHASSIS, the user is allowed the fl xibility to adjust
details of the used cooling schedule and other optimisation parameters such as the scales relevant to the jump
distribution (s1, s2). In this note, it is worth mentioning that the current implementation of optimisation is
modular, and it is simple to replace it by a more effcient routine.

2.3 Required User Input

The methodology discussed above is incorporated into CHASSIS and all that user is required to input is the
velocity data, the source of which is independent of CHASSIS. Thus, measured kinematic data, irrespective of
its source, is acceptable, as long as the columns pertain to the observables rp, v3 and the measured errors in v3.

Here rp =

√

x21 + x22. Besides, the user is allowed to input details such as the number of bins, bin widths, fraction
of data she wants to perform the run with, the seeds for the sought solutions and the optimisation related details
(see Section 2.2). The user inputs are advanced via an input fil that CHASSIS calls at the beginning of a run.

2.4 Assumption of Isotropy

Given the limited data sample, we fin that limiting the domain of f to 2-D is not constraining enough in reducing
the magnitude of uncertainties in the estimated solutions to useful levels. Thus, we resort to imposing the further
constraint that f = f (E), i.e. we assume isotropy to exist in phase space (since E is symmetrical in v j and x j,
where j=1,2,3). Then we resort to (1) justifying or rejecting our assumption in the data by performing a test of
hypothesis exercise (2)exploring independent measurements that may be available in the literature to obtain a ρ
that is unaffected by the amount of anisotropy in the data.

3 Testing for Isotropy - Nonparametric FBST

We test for isotropy in the data, i.e. the null hypothesis H0 : f̂ = Ψ[E(v, r)], where f̂ is the phase space pd f from
which the observed data are drawn and Ψ is some function that manifests phase space isotropy: Ψ(E) = 0∀E > 0
and Ψ(E) > 0 otherwise.

This H0 is tested in the data u along the lines of the Fully Bayesian Significanc Test or FBST (Pereira &
Stern 1999; Pereira, Stern & Wechsler 2008), except that here, we advance a nonparametric implementation of
the same. Our null is sharp, as is the requirement for FBST (Madurga, Esteves &Wechsler 2001). We refer to our
object functions {ρ(·), f (·)} ≡ θ (say); let θ ∈ Θ-space. We assume that θ is continuous in the Θ-space. According
to FBST, the evidence in favour of H0 is 1 − ev, where:

ev = 1 − Pr(θ ∈ T |u), where
T = {θ : Pr(θ|u) > Pr(θ∗|H0)}. (8)

Here θ∗ is the value of θ which, under the null, maximises the posterior Pr(θ|u).
At the end of every iterative step during a run of CHASSIS, a θ configuratio is identified The f (·) recovered

upon convergence of the run is indeed a function of E and E only but the true f̂ is not necessarily so.
Upon convergence of a run of CHASSIS performed with data u, we sample the recovered θ, N times, such

that the ith sampling of θ gives the ith set of observables or ui; i = 1, 2, . . . ,N. These N data samples are then
input into N different new runs of the algorithm. During the run performed with the data ui, the jth iterative step
yields the configuratio θ j

i (say), where θ
j
i ≡ { f (·)

j
i , ρ(·)

j
i }. Then f (·) j

i is isotropic ∀i, j, since the phase space pd f
from which ui is drawn is the recovered f (E), which by construction, is indeed isotropic.

We scan over all i, j to identify i∗, j∗ for which the posterior is maximised. Thus, θ j∗

i∗ = θ
∗ is identified Here

θ∗ ≡ { f ∗(E), ρ∗(r)}, i.e. functions recovered at the end of the j∗-th step, in a run performed with the data ui∗ .
In this nonparametric implementation, Pr(θ ∈ T |u) = X/Y , where X is the number of times that a step yields a

likelihood in excess of Pr(θ∗|H0) in all the undertaken runs. Y is the total number of iterative steps in all the runs
undertaken.
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Figure 1: Left: The (normalised) phase space distribution functions recovered from two runs of CHASSIS,
performed with the GC data uG (in black) and PNe data uP (in red). The normalisation is performed to ensure
that f (E)=1 for E=-1. These pd f s are recovered under the assumption of isotropy and our implementation of
nonparametric FBST shows that the profil in black is expected to be closer to the true phase space pd f than is the
profil in red. The errors are ±1-σ uncertainties identifie on the solution by the optimiser. Middle: Gravitational
matter density distributions from three runs with uG performed with three different seeds (in magenta, cyan and
black) and from 3 runs with uP (in yellow, red and blue). The units of density and radius are astrophysical. Right:
ρ(r) from one of the runs done with uG is shown in black while that with uP is in red. The ρ∗(r) corresponding to
the implementation of data uG is shown in green while that corresponding to uP is in blue. We notice that ρG(r)
is consistent with ρ∗(r) obtained from uG while ρ∗(r) obtained from uP is significantl lower than ρP(r).

4 Application 1 - multistability in galaxies

It is a common practise in astrophysics to employ the measured 1-D velocity data of suitable galactic members,
with the aim of recovering the total gravitational mass distributions. To examine the viability of such a practise,
we employ the available measured kinematic data of two distinct classes of galactic members in an example
galaxy - as an aside, these are planetary nebulae (PNe) and globular clusters (GCs). The data of 164 PNe (uP) are
due to Douglas et al (2007) and that of 30 GCs (uG) are due to Bergond et. al (2006). These sample sizes are too
discrepant to allow for easy interpretation of any p-value based testing of H0 define in Section 3. Instead, we
resort to the non-parametric FBST discussed above.

The two data sets are input into the isotropy-assuming and sphericity-assuming CHASSIS. The f (E) and ρ(r)
recovered from the two distinct data are found to be inconsistent with each other, within error bars (Figure 1).
The difference in the recovered f (·) could arise from different divergences between an isotropic phase space pd f
and the f̂ from which uP are drawn, as compared to that from which uG are drawn. However, the distribution of
gravitational matter in the galaxy should be uniquely determined. That such is not our conclusion, prompts us to
examine if the inherent assumption of isotropy is to be blamed. Thus, we test for our null H0 (define above in
Section 3) in the data uP and uG separately.

The results of our implementation of FBST are shown in Figure 1. We fin that for three different runs done
with distinct seeds, given uP, the average evidence in favour of the null is about 0.60 For three runs done with
different seeds, given uG, the average 1− ev is 0.95. Thus we conclude that the degree of isotropy of the pd f that
uG is drawn from is higher than that of the pd f that uP is drawn from.

We wonder if the difference in the recovered mass distributions be due to the concluded difference in isotropy
in the two data sets? To understand this, we invoke the peculiarity of CHASSIS that the algorithm overestimates
mass density at all r where phase space anisotropy prevails (discussed in Section 5). Thus, we expect that ρ(r)
recovered using uP (ρP(r)) is more of an over-estimate compared to the galactic mass density than is the ρ(r)
recovered using uG (ρG(r)).

However, as shown in Figure 1, at all r & 6 kpc, ρG(r) > ρP(r). Therefore, to reconcile the difference between
ρP(r) and ρG(r), the isotropy issue cannot help unless we propose that uG is drawn from a more anisotropic pd f
than uP. This is of course not true but its inverse is. Hence we conclude that differences in ρG(r) and ρP(r) are
intrinsic to the system and not due to our assumption of isotropy.

Thus we have demonstrated the potential risk in employing kinematic data of individual galactic members of
a particular population type, to compute the gravitational mass distribution of galaxies. We have also shown that
the galactic phase space is described by at least two distinct basins of attractions, i.e. the galaxy is multistable, as
we would expect complex systems like galaxies to be.
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Figure 2: Gravitational mass density distributions over radius, obtained from runs done with data drawn from
three different phase space distributions ( fGauss, fWD fMichie) that are distinguished from each other in terms of
the inherent degree of anisotropy in their forms. ρ(r) estimated from run performed with data S isotropy is in black,
with S WD is in red and with S Michie is in blue. The ρ(r) implied by the fiduciar test potential Φtest(r) is in cyan.
The left panel displays results obtained when the constraint of total mass is included (M0 ≈ 4.06×1011 M⊙ within
about 8.7 kpc). On the right, the general inconsistency between the estimated profiles when the mass constraint
is excluded, is brought out.

5 Application 2 - using the total mass constraint

Motivated by the need to simplify our analysis by reducing the number of degrees of freedom to the bare mini-
mum, we persist with the assumption of f = f (E), i.e. phase space is isotropic. We envisage that when the data
have been drawn from an anisotropic pd f , the algorithm will imply erroneous answers. Using physical arguments
we can predict the nature of this error - CHASSIS overestimates ρ(r) at r where phase space anisotropy prevails.

We implement an independent measure of the total gravitational matter (M0) inside a given radius (RE) in
an example galaxy with the aim of recovering the correct solution for ρ(r) under our assumption of isotropy,
irrespective of the degree of anisotropy of the pd f from which the input data is drawn. If the system is at a large
distance from us, we cannot get velocity data of individual galactic members. Then, we can only get projected
velocity dispersion values (σp) at 1 or a few radial locations in the galaxy. In this background of sparse and
incomplete velocity data, we prepare velocity data samples for inputting to CHASSIS, in the following way.

We select observables (x1, x2, v3) from 3 different toy f (·), two of which are selected to depend on E and L
while the third is isotropic. For the example galaxy, σp is known at r1, r2 and r3 say. Then we consider the system
to be divided into 3 anulii with r ∈ [0, r1], (r1, r2], (r2, r3]. The error δ in the σp measured at ri (i = 1, 2, 3) can
be related to the size of the data sample Ni we intend to draw from the given annulus, assuming normal error
distribution. The phase space pd f that we choose our samples from are fGauss, fWD fMichie:

fGauss(E) =
1

√
2πσ2

exp
(−E
σ2

)

E < 0,

= 0 E > 0,

fWD(E, L) =
1

√
2πσ2

exp
(

− L2

raσ2

)

exp
(−E
σ2

)

E < 0,

= 0 E > 0.

fMichie(E, L) =
1

√
2πσ2

exp
(

− L2

raσ2

)

[

exp
(−E
σ2

)

− 1
]

E < 0,

= 0 E > 0. (9)

The samples chosen from fGauss, fWD fMichie are S Gauss, S WD S Michie (say). Also, to test for the effect of data from
different forms of f (·), we defin E = v2/2 + Φtest(r) where we choose Φtest(r) ∼ 1/

√

r2 + r2c .
The total mass constraint is expected to narrow down the range of solutions possible; in this sense it acts as

a prior on the solution for ρ(·). We test if the chosen data samples, when input into CHASSIS, recover a Φ(r)
that is concurrent with Φtest(r) when we include/exclude the constraint that total mass within r = RE is M0.
Here M0 is obtained from literature as about 4.06×1011 M⊙, with errors of δM0 = ±0.2 × 1011 M⊙ and RE ≈8.7
kpc (Koopmans & Treu 2003). We incorporate the constraint by adding a penalty function to the definitio
of the likelihood; the role of this penalty function is to penalise any solution that implies a total gravitational
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mass within RE (Mc(RE)) different from M0. This penalty function is α|Mc(RE) − M0|/2δM0. Here α is a flag
designed to include or exclude the constraint from the definitio of the likelihood, depending on whether it is 1
or 0 respectively.

The results of conducting our test runs are shown in Figure 2. We fin that when the constraint is included,
the ρ(r) profile are consistent with each other within errors, irrespective of the anisotropy in the data used to
obtain this profile In absence of guidance from the constraint, anisotropy affects results.

6 Summary

Here we have discussed the novel nonparametric Bayesian algorithm CHASSIS that estimates the most likely
phase space pd f ( f (·)) from which an observed sample of 1-D component of velocities of individual galactic
members is drawn, at the most likely gravitational potential Φ(·) of the galaxy. The main purpose of this paper
is to bring out the fact that CHASSIS is a robust and viable algorithm that can be implemented to extract the all-
important gravitational matter density distribution in distant galaxies, even within the domain of very sparse and
incomplete data. Given the dearth of measurements in these systems, it is prudent to work with a small number
of degrees of freedom. With this in mind, one version of CHASSIS has been designed to work under the purview
of the assumption of isotropy in phase space, by which we imply an f (·) that is symmetric in the 3 velocity and
3 spatial coordinates. In another version, the assumption of isotropy is not made and CHASSIS is made to work
with a greater number of dof (Chakrabarty & Saha, under preparation).

We offer independent means of tackling the obvious fallout of the assumption of isotropy, when invoked;
phase space pd f s from which realistic data are drawn, will not be isotropic in general, leading to spurious solu-
tions for f (·) and Φ(·). Firstly, a robust test of hypothesis is developed that tests the assumption of isotropy, given
the data. This test is modelled after Pereira & Stern’s (1999) FBST and is designed to work in the nonparametric
context. Data available in astrophysical literature are implemented to conclude that kinematic data of distinct
galactic member populations will in general provide distinct gravitational mass distributions. The multistability
of the example galaxy is demonstrated and the folly of this mode of mass determination is indicated. Secondly,
we demonstrate that the usage of information about total gravitational mass, available in the literature, can con-
strain the sought gravitational matter density distribution, irrespective of anisotropy in the data. Such a constraint
basically supplements for the uninformative priors that we use within CHASSIS.

Currently, we are working on the establishment of a critical value of the evidence value in favour of a given
null. This will enable the quantifie judgement of when to reject or accept the null, given the data. At the moment,
our implementation of FBST only allows for a comparative judgement.
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