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Abstract: Forecasts of future seasonal streamflows are valuable to a range of water managers and users, 
including irrigators, urban and rural water supply authorities, environmental managers and hydroelectricity 
generators. Such forecasts can inform planning and management decisions to maximize returns on 
investments and available water resources, and to ensure security of water supplies. Historically, routine 
forecasts of seasonal streamflows have not been available in Australia.   

There are two main sources of predictability in Australian streamflows. Strong serial correlations in 
streamflows arise due to soil and groundwater storages extending the time between the incidence of rainfall 
and any resulting streamflow. Thus, indicators of initial catchment conditions may be good predictors of 
future streamflows. Future rainfall and climate also influence future streamflows. Many indices of large-scale 
climate anomalies, such as the Southern Oscillation Index and Indian Ocean Dipole Mode Index, show 
significant concurrent and lagged correlations with rainfall and streamflows and therefore may be useful 
predictors of streamflows too. However, there has been no systematic investigation into how to best process a 
large array of candidate predictors to produce skilful and reliable seasonal streamflow predictions for 
different locations and seasons.   

This paper introduces a method to select predictors of streamflows for the recently developed Bayesian joint 
probability (BJP) modelling approach to seasonal streamflow prediction at multiple sites. The predictor 
selection method seeks to identify reliable predictors that produce skillful predictions. An important outcome 
should be that the selected predictors are consistent with our understanding of the physical hydrological and 
climate systems. The method selects predictors that give the largest improvement in prediction accuracy and 
are supported by statistical evidence. The prediction accuracy is assessed using a skill score based on mean 
squared error in probability (SSRMSEP), while the evidence supporting predictor selection is assessed using the 
log pseudo Bayes factor (log PsBF).  

The predictor selection method is tested on two catchments in south eastern Australia: the Goulburn and the 
Murrumbidgee. Predictions of three month streamflow totals are made on the first day of each month using 
separate models for each prediction date. In each catchment, streamflow predictions are made jointly for 
three stream gauging stations. A base model is established using only streamflows for the month preceding 
prediction as predictors. These antecedent streamflows are used to represent the initial catchment conditions. 
Additional predictors are selected for each prediction date from a set of 42 candidates that includes a number 
of climate indices at various lag times. The predictive performance measures used in selecting predictors are 
derived from cross validation predictive probability density functions computed using importance 
resampling. The performance of the predictors is assessed using graphical means. The physical 
interpretability is appraised by comparing findings to the reported literature and knowledge of climate 
experts.    

The results show that climate indices can make improvements to the accuracy of streamflow predictions most 
of the year with the greatest improvement during spring. The predictors selected for the Goulburn catchment 
are dominated by climate anomalies in the Indian Ocean, while those selected for the Murrumbidgee 
catchment are dominated by climate anomalies in the Pacific Ocean. Reports in the literature support the 
finding that the two catchments are influenced by different climate systems. During autumn, the selected 
predictors seem to be augmenting the representation of the initial catchment conditions and therefore further 
investigation into the best indicators of initial catchment conditions are required. Future work is also required 
to test the robustness of the proposed predictor selection method using double cross-validation and applying 
it to catchments elsewhere in Australia. 
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1. INTRODUCTION 

Forecasts of future seasonal streamflows are valuable to a range of water managers and users, including 
irrigators, urban and rural water supply authorities, environmental managers and hydroelectricity generators. 
Such forecasts can inform planning and management decisions to maximize returns on investments and 
available water resources and to ensure security of supply. Historically, routine forecasts of seasonal 
streamflows have not been available in Australia. The Bureau of Meteorology are now extending their 
seasonal climate prediction service to include water availability and in the first instance predictions of 
streamflows [Plummer et al., 2009]. 

There are two main sources of predictability in Australian streamflows. Streamflows in many parts of 
Australia display high serial correlation (or persistence) [Chiew et al., 1998].  This persistence arises due to 
soil and groundwater storages delaying responses in rainfall-runoff processes, giving streamflow data a 
memory of several months [Chiew et al., 1998].  Therefore, indicators of the initial catchment conditions 
provide a source of predictability for future streamflows.    

The magnitude of future streamflows is also related to future rainfall and climate conditions. Many studies 
have found concurrent and lagged correlations between large-scale climate indices, such as the Southern 
Oscillation Index and Indian Ocean Dipole Mode Index, and rainfall [for example, McBride and Nicholls, 
1983] and streamflows [for example, Chiew et al., 1998].  The strength of the observed correlations suggests 
that large-scale climate indices may be useful predictors of future streamflows. However, the literature 
reports a large array of climate indices that display correlations with rainfall and streamflows and there has 
been no systematic investigation into how to best process all these potential predictors to produce skilful and 
reliable seasonal streamflow predictions for different locations and seasons.    

There are several possible approaches to using the potential predictors to produce streamflow predictions, 
including hierarchical modelling, model averaging and predictor/model selection. Where there are a very 
large number of potential predictors, methods such as hierarchical modelling and model averaging become 
computationally challenging for operational use, and therefore the selection of a subset of predictors is 
necessary. The subset of predictors may be selected using certain measures of predictive performance. 
However, in dealing with a large number of potential predictors and only limited data, there is a need to 
minimize the influence of chance features in the available data on the selection of predictors. An important 
outcome of predictor selection should be that the selected predictors are consistent with our physical 
understanding of hydrological and climate systems.  

This paper describes a method of predictor selection for seasonal streamflow prediction using the Bayesian 
joint probability (BJP) modelling approach. The method selects predictors that give the largest improvement 
in prediction accuracy and are supported by the statistical evidence. The prediction accuracy is assessed using 
a skill score based on mean squared error in probability (SSRMSEP), while the evidence supporting predictor 
selection is assessed using the log pseudo Bayes factor (log PsBF). The method is tested through two case 
studies involving the prediction of streamflows in south eastern Australia. Streamflow predictions are made 
on the first day of each month for a lead time of three months. Antecedent streamflows are used as base 
predictors, and additional predictors are selected from a list of 42 candidate climate indices. The selected 
predictors are examined for their consistency with understanding of the contributing hydrological and climate 
systems.  

2. METHODS 

2.1. Bayesian Joint Probability (BJP) Modelling Approach  

The BJP modeling approach was used produce predictions of future streamflows [Wang et al., 2009]. The 
BJP modelling approach assumes that a set of predictands ( ( )2y ), in this case future streamflows, and 

predictors ( ( )1y ) is described by a Box-Cox transformed multivariate normal distribution.  
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where z is a vector of Box-Cox transformed future streamflows and their predictors. Model parameters (θ) 
include vectors of the Box-Cox transformation parameter (λ), the mean (μ) and standard deviation (σ), and 
the correlation coefficient matrix (R). The posterior distribution of model parameters 
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obtained from Bayesian inference, performed using Markov chain Monte Carlo sampling. Probabilistic 
predictions of future seasonal streamflows are produced by conditioning the transformed multivariate normal 
distribution on predictor values.  

The BJP modeling approach overcomes many of the limitations of previous statistical techniques applied to 
streamflow prediction [for example, Piechota et al., 2001]. The Box-Cox transformed multivariate normal 
distribution has considerable flexibility for modelling a wide range of predictors and predictands. The BJP 
modeling approach can be used to produce joint probabilistic predictions of streamflows at multiple sites that 
preserve inter-site correlations. The BJP modeling approach allows the use of data that contains non-
concurrent and missing records in both parameter inference mode and prediction mode. The model flexibility 
and data handling ability means that the BJP modelling approach is potentially of wide practical application. 

2.2. Streamflow prediction models  

For this study, predictions of three month streamflow totals for multiple sites were made on the first day of 
each month. A base model ( 0M ) was established using only streamflows for the month preceding the 

prediction as predictors. To produce predictions for all prediction dates, 12 separate models were established, 
one for each month. The base model was then expanded in steps to new models ( 1M ) that include climate 

indices as additional predictors.  

The performance of each model in predictive mode was assessed using leave-one-out cross-validation 
predictions. Leave-one-out cross-validation involves establishing the model using all historical data except 
one case and then predicting the streamflow for the missing case. This procedure is repeated for all cases in 
the historical record to provide an overall assessment of model performance. 

Establishing a model involved Bayesian inference of model parameters using Markov chain Monte Carlo 
sampling. Importance resampling was used as a fast method to calculate the leave-one-out cross-validation 
posterior parameter densities [Gelfand, 1995; Vehtari and Lampinen, 2002]. A total of 10,000 sets of 
parameters were sampled from the full posterior parameter distribution using the Metropolis algorithm. 
Importance resampling was then used to sample 1000 sets of parameters that represented the leave-one-out 
cross-validation posterior parameter densities for each case in the historical record. The streamflow 
predictions for each case were numerically represented by a sample of 1000 sets of values, one generated for 
each of the 1000 sets of parameter values. 

For each model, the cross validation joint predictive probability density function of streamflows at multiple 
sites is given by 
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The marginal distributions of ))2(( ttf y  give predictive probability functions for streamflows at individual 

sites, denoted here as )( tt yf  for the density distributions and )( tt yF  for the cumulative distributions with 

median predictions t
MEDy . 

2.3. Predictor selection criteria 

Different mathematical models generally give different predictions. Two measures were used here to assess 
improvements in predictions by model 1M  over a base model 0M . The first measure is the RMSEP (root 

mean squared error in probability) skill score of model 1M  median predictions in reference to model 0M  

median predictions. For each streamflow site, it is defined as 
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(.)CLIF  being the observed historical cumulative distribution (climatology) of the streamflows at that site. An 

overall 10RMSEPSS  value was obtained by averaging the skill scores for all the streamflow sites. The RMSEP is 

a measure of prediction error. The 10RMSEPSS measures the reduction in prediction error, or the improvement 

in the prediction accuracy, of 1M  over 0M . The RMSEP is similar to the Linear Error in Probability Space 

(LEPS) score [Potts et al., 1996].  However, the RMSEP is suited to a more traditional skill score formulation 
than LEPS. Skill scores calculated using both LEPS and RMSEP are similar over the range of 0% to 100% 
(Wang and Robertson, unpublished data). Note that the RMSEP used here is based on median predictions 
only. In a follow-up study [Robertson and Wang, 2009], it is applied to the full distributions of predictions. 

The second measure is the log pseudo Bayes factor defined as 
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The 10log PsBF  assesses the statistical evidence supporting 1M  over 0M . The pseudo Bayes factor differs 

from the traditional Bayes factor in that it is calculated using the cross validation predictive density rather 
than the prior predictive density [Gelfand, 1995].  The pseudo Bayes factor is therefore less sensitive to the 
prior parameter distribution [Vehtari and Lampinen, 2002]. 

Preliminary investigations showed some seasonal patterns in  10RMSEPSS  and 10log PsBF  but also random 

fluctuations. Weighted neighbor averaging was used to smooth out some of the noise on the assumption that 
there is an underlying seasonal continuity in climate drivers. For each prediction date, mon , weighted 
neighbor averages of 10RMSEPSS  and 10log PsBF  were calculated as 
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Predictor selection seeks to find the predictors that give the largest improvement in the prediction accuracy, 
provided that such improvement is reasonably supported by statistical evidence. Specifically, the predictor 

that give the largest improvement in 10RMSEPSS  and satisfy 5.0log 10 ≥PsBF  is selected.  

2.4. Analysis of selected predictors 

To examine the performance of the different predictors, a predictor selection plot of the 10RMSEPSS values of 

all candidate predictors with 5.0log 10 ≥PsBF  for all prediction dates was produced. The consistency of the 

selected predictors with understanding of the physical climate and hydrological systems was assessed by 
examining the literature for supporting or contradictory evidence and through discussions with climate 
experts. 

3. DATA 

3.1. Streamflow data 

The predictor selection procedure was tested on two locations in south eastern Australia. The locations were 
chosen in catchments with considerable consumptive water use, where streamflow predictions were 
potentially of some value, and with streams that are not ephemeral, due to a current limitations in the BJP 
modelling approach. The two locations chosen were the Goulburn catchment in Victoria and the 
Murrumbidgee catchment in NSW. At each location, three gauging stations were identified on streams that 
had unimpaired catchments and long, relatively complete streamflow records (Table 1). Stations in close 
proximity to each other were chosen to ensure that they responded to the same climate influences (Figure 1).  
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(a) (b)

 

Figure 1. Location of gauging stations in the (a) Goulburn and (b) Murrumbidgee catchments 

Table 1. Study gauging stations 

Location Gauging 
Station 

Station Name Catchment 
area (km2) 

Available 
record 

Mean Annual 
Flow (mm) 

Goulburn  405205 Murrindindi River at Murrindindi 619 1946-2008 494 
Goulburn 405209 Acheron River at Taggerty 368 1948-2008 495 
Goulburn 405214 Delatite River at Tonga Bridge 694 1955-2008 310 

Murrumbidgee 410024 Goodradigbee River at Wee Jasper 990 1914-2007 275 
Murrumbidgee 410057 Goobarragandra River at Lacmalac 673 1944-2007 399 
Murrumbidgee 410061 Adelong Creek at Batlow Road 155 1947-2007 240 

3.2. Additional predictors 

From the literature, 12 indices of large-scale climate anomalies were identified as potential predictors of 
streamflows (Table 2). All of these indices have been found to have high concurrent or lagged correlations 
with monthly rainfall in different parts of Australia. Monthly values of all 12 indices lagged by up to three 
months were considered to be potential predictors. These predictors were considered to characterize the 
oncoming climate conditions. Antecedent rainfall was also included as an additional measure of the initial 
catchment condition. Antecedent catchment rainfall lagged by up to six months was considered to be a 
potential predictor, due to the potentially very long delays in rainfall-runoff processes that may occur.  In 
total, 42 candidate predictors were considered. Preliminary data analysis showed that the climate indices 
based on direct observations, specifically the Southern Oscillation Index and catchment rainfall, were 
considerably noisier that other climate indices.  To reduce this noise, three month averages were used instead 
of monthly values. 

Table 2. Indices identified as potential additional streamflow predictors 

Predictors 
Period of 

record 
Data source 

Indian Ocean West Pole Index  1854-2008 NCAR, ERSST.v3 [Smith et al., 2008] 
Indian Ocean East Pole Index  1854-2008 NCAR, ERSST.v3 [Smith et al., 2008] 
Indian Ocean Dipole Mode Index  1854-2008 NCAR, ERSST.v3 [Smith et al., 2008] 
Indonesia Index  1854-2008 NCAR, ERSST.v3 [Smith et al., 2008] 
NINO3 1950-2008 NECP – SST anomalies  
NINO3.4 1950-2008 NECP – SST anomalies 
NINO4 1950-2008 NECP – SST anomalies 
Southern Oscillation Index  1876-2008 Bureau of Meteorology 
ENSO Modoki 1854-2008 NCAR, ERSST.v3 [Smith et al., 2008] 
Thermocline  1980-2008 Bureau of Meteorology 
Southern Annular Mode  1957-2008 Marshall’s[2003] data  
Tasman Sea Index  1854-2008 NCAR, ERSST.v3 [Smith et al., 2008] 
Catchment rainfall 1900-2008 SILO data  

4. RESULTS  

4.1. Predictor selection for the Goulburn catchment 

Figure 2a presents the predictor selection plot for the Goulburn catchment, showing the 10RMSEPSS for those 

candidate predictors with 5.0log 10 ≥PsBF . The plot shows that additional predictors increase the prediction 
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accuracy for all dates with the exception of those made in June, July, August and December. The greatest 
increase in prediction accuracy occurs during the spring months.  

The best predictors also show consistency with knowledge of the physical processes influencing streamflow. 
The Indian Ocean Dipole Mode Index, lagged by one month, is the best predictor for predictions made during 
the spring months. This finding concurs with the conclusions of recent studies [for example, Ummenhofer et 
al., 2009] that south eastern Australian rainfall is influence by Indian Ocean sea surface temperature 
anomalies in spring. The Indonesian Index, lagged by three months, is the best predictor for predictions made 
during January, February and March. This is consistent with the finding of Cai and Cowan [2008] that 
rainfall in northern Victoria is correlated with Indonesian sea surface temperature anomalies. Catchment 
rainfall lagged by 6 months is the best predictor for predictions made during April and May. One possible 
explanation of this result is that the antecedent streamflow contains both base flow and quick flow signals, 
while the lagged rainfall provides an indicator of just the base flow component.  During these months the 
catchment is wetting up and therefore the total streamflow for the month prior to the prediction does not 
completely capture the initial catchment condition and the lagged rainfall is acting as an additional indicator.  

(a) 

Prediction date

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

S
S

R
M

S
E

P
1

0

0

2

4

6

8

10

12

A1

A2
L1

D1

G1

G1

G1

G2

G2

G2

G2

H1

I1
I3

J1
J1

J2

J3

J3

J3

K2

K3

M2

M5

M5

M6

M6

SOIA
B NINO3

D NINO4 

20°C Isotherm F
Indian Ocean Dipole Mode IndexG
Indian Ocean East Pole IndexH
Indian Ocean West Pole IndexI
Indonesian IndexJ
Tasman Sea Index K

C NINO3.4

SAML

E ENSO Modoki 

Catchment rainfallM

(b) 

Prediction date

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

S
S

R
M

S
E

P
10

0

2

4

6

8

10

12

A2

A3
A3

F1

F1

F1

F2 F2

L3

B1

B1

B1

D1

D1

D1

D2

D2

D3

D3

G2
G3

J2

K2
M4

C1

C1 C1

C2

C2

C3

SOIA
B NINO3

D NINO4 

20°C Isotherm F
Indian Ocean Dipole Mode IndexG
Indian Ocean East Pole IndexH
Indian Ocean West Pole IndexI
Indonesian IndexJ
Tasman Sea Index K

C NINO3.4

SAML

E ENSO Modoki 

Catchment rainfallM

Figure 2. Predictor selection plot for the first additional predictor for (a) the Goulburn catchment and 
(b) the Murrumbidgee catchment. 

Each symbol is a candidate predictor, the letter signifies the climate index and the number the lag. 
 For example A3 is SOI lagged by 3 months. 

4.2. Predictor selection for the Murrumbidgee catchment 

Figure 2b presents the predictor selection plot for the Murrumbidgee catchment. The plot shows that the 
largest improvement in prediction accuracy occurs between September and December, with only a small 
improvement for the remainder of the year. The majority of the best predictors are indicators of climate 
anomalies in the Pacific Ocean that are related to the El Nino – Southern Oscillation. During the period 
between September and December, there is consistency between the best predictors and understanding of 
physical processes. Several authors have shown that the correlations between the El Nino – Southern 
Oscillation process and seasonal rainfall in central New South Wales are strongest during spring [for 
example, McBride and Nicholls, 1983]  

For predictions made between January and July, there is little consistency of best additional predictors with 
understanding of the physical processes. While correlations have been observed between climate predictors 
and rainfall during this period, the examination of modeled soil moisture data suggests that incident rainfall 
during this period will tend to replenish soil and groundwater storages rather than contributing directly to 
streamflows (not shown). Therefore, the best additional predictors for this period may be augmenting the 
representation of the initial catchment condition, or may be representing chance features within the data. This 
suggests further investigation into the best indicator of the initial catchment condition is necessary. 

5. CONCLUSIONS 

Seasonal predictions of streamflows are valuable to a wide range of users. Predictability in seasonal 
streamflows can be sourced from indicators of initial catchment and future climate conditions. However, it is 
necessary to identify which indicators are useful predictors of seasonal streamflows. This paper has described 
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a method to select predictors for seasonal streamflow prediction using the Bayesian joint probability 
modelling approach. The method selects those predictors that result in the greatest improvement in predictive 
accuracy, provided that such improvement is reasonably supported by statistical evidence. Specifically, the 

method selects those predictors that have the largest neighbor weighted average 10RMSEPSS  with 

5.0log 10 ≥PsBF .  

The proposed predictor selection method was tested on the Goulburn and Murrumbidgee catchment in south 
eastern Australia. The results show that climate indices can make improvements to the accuracy of 
streamflow predictions for most of the year with the greatest improvement during spring. The predictors 
selected for the Goulburn catchment are dominated by climate anomalies in the Indian Ocean, while those 
selected for the Murrumbidgee catchment are dominated by climate anomalies in the Pacific Ocean. Reports 
in the literature support the finding that the two catchments are influenced by different climate systems. 
During autumn the selected predictors seem to be augmenting the representation of the initial catchment 
conditions and therefore further investigation into the best indicators of initial catchment conditions are 
required. Future work is also required to test the robustness of the proposed predictor selection method using 
double cross-validation and applying it to catchments elsewhere in Australia. 
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