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Abstract.  The engineering specifications that define aircraft proximity management functions are 
currently under an intense review.  Simultaneously, in an operational context, the frequency of aircraft 
proximity incidents is anticipated to increase due to the growth in traditional air travel, and the 
introduction of aerial vehicle operations (without a human pilot), and of personalised jets.   

The design of the airspace rules and procedures needs to be dependable thus assuring that minimum 
miss-distances and response times will not be violated during all the close proximity situations that arise 
in actual operations. These important assurances need to be captured as design requirements and 
objectives (Fulton, 1999, 2002). The development of generalised optimisation strategies and 
mathematical solutions are used to baseline system performance.   

An important operational issue in all air transport systems (it is equally applicable to sea transport) and a 
specific design requirement is to be able to determine the closest point of approach (CPA) 
(Tarnopolskaya, Fulton, 2008, 2009; Krozel, Peters, 1997) between aircraft trajectories. The CPA 
identifies a local minimum in relative range (miss-distance). Several systems have been proposed to 
manage the varying degrees of proximity arising. These are classified by the time required to reach CPA. 
The analysis in this paper is generally applicable for all time intervals and aircraft speeds that permit 
earth curvature effects to be ignored. It is most appropriate for systems that come under the generic 
classifications of Airborne Collision Avoidance System (ACAS) and Airborne Separation Assurance 
System (ASAS).  

Two aircraft with uniform velocities are considered. The first aircraft, titled own-aircraft is the point of 
reference. The second aircraft is considered a threat or intruder for own-aircraft.  The traditional 
formulation is presented in Section 2. It is posed in relative space using the state-vector ( , , )r φ θ=   r that 
specifies, in polar coordinates, the instantaneous relative range, bearing, and heading between the 
aircraft. Some recently published results (Gates et al, 2008) are refined and interpreted further. Then, in 
Section 3, the same situation is re-presented in a Cartesian Co-ordinate system such as an earth reference 
frame. This latter formulation is suitable for new systems due to the advent of the widespread use of 
satellite navigation systems which provide aircraft 3D position as (latitude, longitude, altitude) and 3D 
velocity vectors.  

This paper is foundational to, and contributes towards, a more generalised concept of CPA where aircraft 
may have either linear or turning motion.  In Section 3, a new approach to specifying proximity is used to 
provide deterministic methods to find the location of the CPA. A geometrical characterization of Fermat's 
method for stationary points in vector form leads to the identification of a fixed reference point that lies 
on the line that is the common perpendicular to the two flight-trajectories. The fixed reference point is 
then used to determine the location of the CPA between the aircraft trajectories. The method can be used 
to more accurately specify aircraft proximity management functions when developing algorithms either 
for aircraft avionics or for air traffic management systems. 
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1. INTRODUCTION 

Own-aircraft, F, is initially at a position,  FP . An intruder aircraft, T, is initially at a position,   TP . The 
situation of aircraft moving with 3D straight motion can be posed in a Cartesian frame with the aircraft 
positions and trajectories as shown in Figure 1. Assume that two 3D lines (trajectories) and  are 
given and they are not parallel.  Their vector equations are given by:  

Γ Δ

                                                 

 

 

where VF and VT  are the velocities of own-aircraft and the intruder respectively.  The frame origin is set 
at point , the intersection of the line,FO Γ , and its common perpendicular with the line, . TheΔ X axis 

 is aligned parallel to, and coincident with, the common perpendicular.  The Y axis  is 

coincident with the line, .  Consequently, the XY-plane is the plane determined by the X axis and Y 
axis.  And, the

( FO X ) ( )FO Y

 Γ

Z axis ( )FO Z  is directed upwards, and orthogonal to the XY-plane. The line, , makes 

an angle,

Δ

γ , with the XY-plane.  The point , is the intersection point of the line, , and theTO Δ X axis.  
The angle,γ , is measured with respect to the normal mathematical convention with angles increasing in 
a positive (anti-clockwise) direction. 

    

Figure 1:  Construction for defining the miss distance between Γ and . Δ

2. AIRCRAFT WITH UNIFORM STRAIGHT MOTION IN 3D RELATIVE SPACE 

Aircraft T appears to move with a relative velocity, VR, with respect to own-aircraft given by: 

R T F RV V V V U= − = R      

where RU  is the unit vector for   RV .  The Line of Sight (LOS) vector is, the instantaneous relative 
displacement (range) between the aircraft. It is a function of time given by the fundamental vector 
equation: 

0 0 0 P P  R LOS R R   TR R tV R U tV U where R                   = + = + = −   F  

The initial unit vector for the LOS between the two aircraft is LOSU as depicted in Figure 2 (A). In general 
the LOS vector will rotate as the intruder's position follows a path in 3D relative space. The LOS vector 
(of the threat aircraft, T, with respect to own-aircraft, F) rotates with an angular velocity, TFΩ , given by: 

   
2     T F RR V   

R
×

Ω =  

   :    Γ  F  Fr P V t= +            t∀ ∈  

  :    Δ
 T  Tr P V t= +             t∀ ∈  

(1)

(2)

(3)

(4)
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                                                     Figure 2:  Geometry of relative situation 

A more complete treatment of the rotation of the LOS vector formulated in terms of the angular 
momentum of a general rotating body for aircraft T is given in Cartesian tensor notation in Zipfel (2000). 

The miss distance between the aircraft at the CPA is given in terms of the LOS vector by: 

(5) 0 0 (( )MD LOS R MD R LOS RR R U U          R R U U U= × ⇒ = × ×⋅ )   

A collision will occur for a non zero || R0|| when || RMD|| = 0    

 LOS R LOS RU U U U⇒ ×    =   0      ⇒    = ±        since  || ULOS || = 1,  || UR || = 1, and ULOS || UR. 

  R LOS  R RV U V U V⇒ = ±   = ± R    and      F  T  R LOSV U= ±V V   

It is similar to that which Gates et al. (2008) have shown. Alternatively, the solution vectors for a 
collision may be geometrically constructed as the intercept(s) of a circle, , of radius || VF || with a line 
drawn parallel to ULOS passing through the vector VTY whose origin coincides with the centre of  as 
shown in Figure 2. The infeasibility of solution can be readily established as shown in Figure 2 (B).  
Feasible solutions are shown in Figure 2(C) where V V , 2 2 0F TY

(6)

− ≥
(7)

  F  TY LOSV V cU= ±   and   TY LOS  T LOS V U V U= × ×  and   2 2

F TYc V  V= −

(8)  F  TY LOSV V cU
+

= +  and   F  TY LOSV V   cU
−

= −

The square of the norm of the relative range, 2R is given by: 

(9) 2 2
0 0 R R R RR R V V t V R t R R= • = • + • + • 0  

 
The time at which the relative range is stationary may be found by differentiation of Equation 9. This 
yields the first instance in this paper of Fermat’s equation for stationary points (Sanford, 1930; Ball, 
1960) – in calculus see Maak (1963, p82), and online Paolini (2003):   
 

           2

0

d
 R    2 2   0

dt
     R  R RR V tV V    = • + • =       by 0R   and  RV   being time independent. 

(10)

(11)                0

2
   R

 R

R V
      t

V

•
⇒ = −  

Equation 9 is a quadratic polynomial, with respect to t, that has a positive quadratic coefficient and 
therefore the stationary point identified by Equation 11 is a true minimum.  

An indicator for closure is given by: ( )LOS  T  F LOS  RU V V U Vκ = • − = • . The CPA will occur at a future 
time if is negative, that is, with a reducing relative range. If  κ κ is positive, the CPA would have 
occurred in the motion at an earlier time. Otherwise κ is zero and the relative range does not change. 
The feasibility of solution is shown graphically in Figure 2 (B and C) and in tabular form in Table 1.  

 392



18th World IMACS / MODSIM Congress, Cairns, Australia 13-17 July 2009 
http://mssanz.org.au/modsim09 

Table 1: Feasibility of solution with a collision 
  Own-aircraft 

Intruder  Speed regime VF- VF+

CASE 0 ||VF||  < ||VTY|| No Solution No Solution 

 CASE I    

||VT|| < ||VF|| Divergence 
Tail-chase for F 

κ < 0 VT+

||VTY|| < ||VF||  < ||VT|| Divergence Divergence 

CASE II    

||VT|| < ||VF|| Divergence κ < 0 

VT-
||VTY|| < ||VF||  < ||VT|| 

Tail-chase for T  

κ < 0 
κ < 0 

A pilot, when needing to avoid proximity with another aircraft, would like to know all possible velocity 
vectors which will bring own-aircraft within a given miss-distance of an intruder aircraft. Holding VT 
constant and using the relationship in Equation 8, a cone comprised of all possible UR vectors can be 
found by rotating UR about ULOS. This is illustrated in Figure 3. The general equation of the surface of 

such a cone with half angle θ,  axial vector, a, and vertex, VT, is:      cos( )  T

  T

r V

r V
a θ

−
• =

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

   

 
                                                     Figure 3: The VR cone of velocities  

The equation of a point r (x, y, z) on the surface of this cone with x-axis aligned to a = ULOS and with 
vertex, VT, is given by:  

Tx Ty
2 2 2

ˆˆ ˆ( ) ( )
ˆ cos( )   by   = (V , V , 0) 

( ) ( )

 Tx  Ty

 T

 Tx  Ty

x V i y V j zk
i V

x V y V z
θ

− + − +
• =        

− + − +

⎛ ⎞
⎜ ⎟  
⎜ ⎟
⎝ ⎠

 (12)

(13)                          ⇒     ta ( )22 2 2n ( ) ( ) Tx  Tyx V y V zθ − = − +⎡ ⎤⎣ ⎦                                         

Now let β = tan(θ) and ( ) 2 2 2 2h        h ( ) Tx Tyx V yβ= − ⇒      = − + V z . This is the equation of a circle 

with radius βh, centred at (h + VTx, VTy, 0).  The circle lies in the y zO , O ) (  plane located at (h + VTx, 0, 

0). Therefore, ( ) [ ]y = h.cos(   and z =  h.sin(      0, 2Tyy V β β φ π− φ)       φ) ∀ ∈ =  

              ⇒                     ( )x, y, z) ,  cos( ) ,  sin( )TX TYx V h V hβ φ β φ= + + (        (14) 
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where φ is the azimuth angle defining rotation about the axis of the cone. Since the equation for constant 

F V  is given by,  (a sphere), the contour of intersection between the cone of 

candidate 

2 2 2 2  FV x y z= + +

 RV  and all constant speed velocity vectors for FV can now be determined as: 

22 2 2( ) ( .cos( ) )   ( .sin( ))   TX TY  Fh V h V h Vβ φ β φ + + + + =  
(15)

                      ⇒ 2 22 2(1 ) 2 ( cos( ))   ( ) 0TX TY  T  Fh h V V V Vβ φ+ + + + − =  

Evaluation of  β  in terms of miss distance, RMD, and the initial line of sight distance, R0, is given through 
the instantiation of  the scalar product  0 VRLOS  R U •    to yield, 

 2 22 2 2 2
0 0 0 0( ) ( ) ( ) .LOS R LOS R R LOS R R M D RR U V R U V U R U U V R R V• = • = • = − 2  

A simple expression for β may be obtained on expansion to components:  

                                                                          
2

2 2
0

MD

MD

R
R R

β =
−

  (16)

In summary, assumptions underpinning existing approaches have been clarified, the partitioning of the 
problem domain has been made explicit in terms of characteristic parameters, and several derivations 
contained in recently published results (Gates et al, 2008) have been interpreted further and refined for 
robust implementation in safety critical systems. 

3. AIRCRAFT UNIFORM STRAIGHT MOTION IN 3D INERTIAL SPACE 

The analysis of proximity between the aircraft is now cast in an Earth referenced frame. This particular 
approach provides a deterministic method for finding the location of the CPA that can be readily applied 
in an operational context where earth referenced navigation systems such as Global Positioning System 
(GPS) are available. The proposed use of the method employed is to more accurately specify aircraft 
proximity management functions when developing algorithms either for aircraft avionics or for air traffic 
management systems.  This paper contributes towards a generalised concept of CPA where aircraft may 
have either linear or turning motion.   

The square of the norm of the relative range, 2R , is used to define the problem. Fermat's equation for 
stationary points (Sanford, 1930; Ball, 1960; Maak, 1963) is then applied to this function leading to a 

complex transcendental equation.  On differentiation of 2R  one might expect a linear relationship to be 
embedded in the solution. Such linearity is evident and can be extracted by subtle use of a determinant 
structure when used to express the condition for the collinearity of three points.  This approach leads to 
the identification of a fixed point that lies on the line that is the common perpendicular to the two flight-
paths. The fixed point is then used to determine, through geometric construction, the location of the CPA 
between the aircraft being the minimum miss-distance in relative range.  Simple procedures for 
calculating a closed form solution result and are presented. 

3.1. Formulation as an optimisation problem 

The situation of aircraft moving with 3D straight motion can be posed in an earth referenced frame with 
the aircraft positions presented in earth coordinates, as shown in Figure 1.  

Clearly,  , O d , ( )0, 0, 0FO = ( ), 0, 0T = ( )0, , 0F FP y= , ( ), ,T T TP d y z= ,  d d=   and R R= ;    

where  
F T

d O O=    and  F TR P P= .   Thus, the equations for straight motion of aircraft are given by: 

                
( )
( )

0

0

the straight motion on 
 

the straight motion on 
      F F

T

y V t y

V tδ δ

Γ= +

Δ= +

⎧
⎨        (17)
⎩

                  where  V ,  V ,  F T 0y  and  0δ   are constants. 
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⇒           
( ) 0cos cos

tan
T T

T T

y V t

z y

γ δ γ

γ

= +

=

⎧
⎨
⎩

 (18)

(19)From        22R R=                               ⇒ ( )22 2 2 2tanF T TR d y y y γ= + − +  

Thus, the miss-distance of aircraft can be determined if we can find values of Fy  and Ty  so as to 

minimise 2R .  Clearly, this is a classical nonlinear and unconstrained optimisation problem. 

3.2. The determination of the Closest Point of Approach (CPA) for aircraft with 3D straight 
motion 

In this section, CPA is presented as a geometrical relationship between aircraft each with straight motion 
(flight paths). A classification of the possible proximity termination conditions is also presented. Further, 
the interpretation provided presents a generalisation of the CPA concept that can be extended to facilitate 
solutions for other flight manoeuvres such as turning flight or combinations of such manoeuvres.   The 
total derivative of  2R   can be described as: 

               
2 2 2

F T

F T

dy dydR R R
dt y dt y dt

∂ ∂
= +

∂ ∂
 

             where     
( )

( )

2

2
2

2

2 2 ta

F T
F

F T T
T

R
y y

y

R
y y y

y
n γ

∂
= −

∂

∂
= − − +

∂

⎧
⎪
⎪
⎨
⎪
⎪⎩

      and     

cos
 

F
F

T
T

dy
V

dt
dy

V
dt

γ

=

=

⎧
⎪⎪
⎨
⎪
⎪⎩

 (20)

⇒                    ( ) ( )
2

22 2 cos tanF F T T F T T

dR
V y y V y y y

dt
γ γ= − − − −  (21)

Fermat’s method for stationary points (Sanford, 1930; Ball, 1960; Maak, 1963) states that stationary 
points of a function (in this case, 2R ) can be found as the roots of the following equation:  

                    
2( )

0
d R

dt
=  (22)

⇒                     V y( ) ( )2cos tan 0F F T T F T Ty V y y yγ γ− − − − =  

Let  F

T

V
V   and use the identity

V
= 2

2

1
1 tan

cos
γ

γ
= + , to obtain: 

                         ( )
2

cos 0
cos

T
F T F

y
V y y yγ

γ
− − =

⎛ ⎞
⎜ ⎟
⎝ ⎠

               (provided cos 0γ ≠ ) −

(23)⇒                    ( ) 1
cos 0

cosF TV y V yγ
γ

− − −
⎛ ⎞
⎜ ⎟
⎝ ⎠

=

y =

 

This yields Fermat’s equation for stationary points when both aircraft have constant velocities. 

⇒                    ( )  ( )2cos cos 1 cos 0F TV y Vγ γ γ− + − (24)

⇒                    
2 2

1 cos 1 cos
1 0

sin sinF

V V
y

γ γ

γ γ

− −
− +

⎛ ⎞ ⎛ ⎞
Ty =⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎜ ⎟         (provided sin 0γ ≠ ) (25)

Fermat’s equation can be cast in the form of a determinant that defines twice the size of the (signed) area 
of a planar triangle specified via its vertices: FP , and .  The vertices are collinear if the triangle area 
is zero. 

Q '

TP

Thus, 
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( )

2

0    1

1 cos
0    1   0

sin

   1

F

T

y

d V

d y

γ

γ

−
=                          (by inspection) 

(26)

Clearly, for 
( )( )2

1 cos
,  0,  0

sin
Q d V γ

γ

−
=  and ( ), , 0T TP d y′ =  then, FP ,  and  are collinear.  Further, 

the point is called the fixed reference point for stationary states.  This relationship shows that if one of 

the points  or  is known, then the remaining point can be determined such that 

Q '

TP

Q

FP TP 2R  is minimised.  

For example, if point  is given, then point  is the intersection of the line  with the lineFP '
TP Q FP 'Δ . 

Clearly,  is the foot of the Z-Projection of point  onto the XY-Plane.  Otherwise, if  point  is 

given, then point  is known as the foot of  by the Z-Projection.  Thus,  point  can be 

determined by the intersection of the line  with the line 

'
TP TP TP

'
TP TP FP

'Q TP Γ .  The geometrical solution is shown in  
Figure 1.  This is the general solution for most straight motion cases.  Three exceptions to the general 
solution that lead to special cases need to be considered separately by a similar approach as above.  They 
are: 

i. Orthogonal motion    :    Γ ⊥ Δ
2
πγ = ± ,    

ii. Parallel motion   Γ   :   Δ 0    orγ π= ,  and 

iii. Intersecting flight paths  . FOΓ ∩ Δ =
This paper provides a link between legacy approaches based on relative range and newer approaches that 
are based on navigational systems providing 3D position in an earth referenced frame. The mathematical 
approach presented here has been shown elsewhere to provide analytic solutions for aircraft with a mix of 
straight and turning flight, thus this approach can form the basis on which the concept of CPA can be 
generalised for practical applications. 
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