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Abstract: We apply singular perturbation to the chemical master equation of the Michaelis-Menten mecha-
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1 Introduction

Enzymatic reactions in intracellular environments are always faster than other protein interactions.
Such biological systems exhibit dynamical stiffness as they have rate constants that vary several orders
of magnitudes which result in different dynamics over different time scales. One of the most well-known
enzymatic reactions is the so-called Michaelis-Menten (mm) mechanism [1, 2, 3] which is an irreversible
conversion of the substrate, S, into a product, D, through the formation of an intermediate species
named complex, C, catalyzed by the enzyme, E. This mechanism which exists in a closed and finite
system is formed by three basic reactions:

E + S
κ1


κ−1

C
κ2−→ E +D (1)

Here, κ1, κ2 and κ−1 are the forward and backward rate constants which show the description of
reactions’ kinetics. Furthermore, the mm constant which governs the reactions is defined as κm =
κ−1+κ2
κ1

. In this paper, we specifically assume: (1) the values of κ2 and κ−1 are always much larger
than κ1 in the system such that the parameter 1

κm
always less than a small parameter ε (which will

be defined in section (2)); (2) the number of molecules of the substrate, x1 , is always much smaller
than κm . Therefore, we know that the population of C is small at any time in the system.

We rename the four molecular species, S ,C ,E and D in the mm mechanism as S1 , S2 , S3 and S4

respectively and let xi , for i = 1, ..., 4 , be random variables which denote the number of Si molecules
in the system. Since the system is closed, one has the following mass conservation laws:

xe0 = x2 + x3 and xs0 = x1 + x2 + x4

where the system initially have xe0 copies of enzyme, xs0 copies of the substrate and zero copy of
complex or product. Hence, it is sufficient to include x1 and x2 only in the modelling.

As a consequence, we can represent the dynamics of species S1 and S2 in a stochastic model with
the so-called chemical master equation (cme):

dP (x1, x2; t)

dt
=

∑
j∈M1

αj(x1 − v1
j , x2)P (x1 − v1

j , x2; t)− αj(x1, x2)P (x1, x2; t)

+
∑

j∈M2

βj(x1, x2 − v2
j )P (x1, x2 − v2

j ; t)− βj(x1, x2)P (x1, x2; t)

= ((A1 +A2)P ) (x1, x2; t) .

(2)

The formulation of this cme (2) is different with the standard modelling which based on the re-
actions (1) directly. Here, we redefine the reactions in mm mechanism according to the molecular
species, that is, M1 = {r1, r2} is the set of reactions involving the substrate where

i. r1 : S1 → ∅ represents the decay of S1 with propensity function α1(x1, x2) = κ1(xe0 − x2)x1 ,
and
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ii. r2 : ∅ → S1 is the production of S1 with propensity function α2(x1, x2) = κ−1x2 .

The set M2 = {r3, r4}, on the other hand, is the set of reactions involving the complex, that is,

i. r3 : S2 → ∅ is the decay of S2 with propensity function β1(x1, x2) = (κ2 + κ−1)x2 , and

ii. r4 : ∅ → S2 is the production of S2 with propensity function β2(x1, x2) = κ1(xe0 − x2)x1 .

The stoichiometric vector vij which associated with these propensity functions defines the way the
state changes when the reaction occurs. In summary, we assume that the reactions involving both
the fast and slow species can be treated separately. We conjecture that this model is an accurate
description of the chemistry in many cases. In particular one can show that the expectations are
preserved.

Here, we classify the chemical species in the system into two distinct subgroups: the fast and the
slow species. We define the fast species to be any species whose molecular level always approach a
stable value in a rate faster than all other species; Slow species, on the contrary, is any species which
evolves slowly to its stationary state. Mathematically, we look to the eigenvalues of propensity matrices
to recognize the characteristic of each species. For species Si whose propensity matrix Ai possesses
larger eigenvalues than other species is classified as fast species, and vice versa. Hence, complex
which involving in reactions with larger propensities (that contribute to the larger eigenvalues in its
propensity matrix) is the fast species; The substrate, on the contrary, is the slow species in the mm
mechanism.

2 Singular perturbation method

As the mm mechanism involves two time scales with rate constants that vary several order of mag-
nitudes, the fraction of the propensities of slow and fast species is expected to be of order O

(
1
ε

)
for

ε ∈ (0, 1). Segel et al. [5] has defined this small parameter as

ε =
xe0

xs0 + κm
. (3)

This system is singularly perturbed that the solution cannot be approximated by simply setting the
parameter ε = 0 as the formulation for regular perturbation problem. The boundary layer phenomenon
exists here so that the approximation fails in a short interval of time at the beginning. In dealing with
such cases, the problem domain is divided into two subdomains. In one of these domains (outer region,
t > 0), the solution can be approximated by setting the parameter ε = 0 . The other domain where
the approximation fails near t = 0+ , a new time variable τ is introduced to enlarge the boundary
layer of O(ε) thickness into semi-infinite interval τ > 0 and thus disclosing the boundary layer jump
in this domain [4]. The solution in the boundary layer can then be well approximated by treating the
newly formulated problem as a regular perturbation problem. Finally, an approximated solution for
the whole domain of the system is yielded by matching both set of solutions at the edge of boundary
layer.

2.1 Outer solution

In order to see the clear appearance of the small parameter ε in the cme, we introduce a scaled variable
T = t

ts
by defining a slow timescale ts = xs0+κm

κ2xe0
for the decay of substrate in the outer region [5].

Then, by using the chain rule, equation (2) is reformulated as

dP̂ (x1, x2;T )

dT
=

∑
j∈M1

α̂j(x1 − v1
j , x2)P̂ (x1 − v1

j , x2;T )− α̂j(x1, x2)P̂ (x1, x2;T )

+
1

ε

∑
j∈M2

β̂j(x1, x2 − v2
j )P̂ (x1, x2 − v2

j ;T )− β̂j(x1, x2)P̂ (x1, x2;T )

(4)

where the propensity functions are α̂1 =
κ1(xs0+κm)(xe0−x2)x1

κ2xe0
, α̂2 =

κ−1(xs0+κm)x2

κ2xe0
, β̂1 = (κ2+κ−1)x2

κ2

and β̂2 =
κ1(xe0−x2)x1

κ2
with the reaction’s stoichiometric vectors v1

1 = [−1, 0]T , v1
2 = [1, 0]T , v2

1 =
[0,−1]T and v2

2 = [0, 1]T .
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As ε→ 0 , the cme (4) degenerates to

Ã2(x1)P̃ (·|x1) = 0 , (5)

where the propensity function of Ã2 is β̂j(x1, x2) at fixed x1 for j ≥ 1 . This means the probability
distribution of the complex, P̃ (x2|x1) is approximated by a stationary distribution in the outer re-
gion. Therefore, the reactions of the substrate will be the major concern in this domain. Summing
equation (4) over x1, we obtain the following cme solely in terms of x1:

dP̃ (x1;T )
dT

=
∑
j∈M1

γj(x1 − v1
j )P̃ (x1 − v1

j ;T )γj(x1)P̃ (x1;T ) (6)

with the propensity function

γj(x1) =
∑
x2

α̂j(x1, x2)P̂ (x1, x2;T )

≈ α̂j(x1 , Ê[x2|x1]) .
(7)

The functional γj(x1) in (7) is the conditional expectation of the functional α̂j(x1, x2) where the ex-
pected value Ê[x2|x1] can be found from equation (5) . This system is known as reduced or degenerate
system where the cme (6) has lower dimension in comparison to the original system (4) . Here, we
use P̃ instead of P̂ to show that the subsystems (5) and (6) which derived when ε = 0 is different
from the original perturbed stochastic system (4).

2.2 Inner solution

The solution obtained via the reduced system is incorrect when t ≈ 0, thus a scaled time variable
τ = t

tc
is introduced to magnify the boundary layer and study the singular limit as ε → 0 . By

modifying the fast timescale tc suggested by Segel et al. [5], tc is set as

tc =
1

κ1 (xs0 + κm)
.

Subsequently, an equivalent form of cme (2) can be expressed in the τ term as:

dP̌ (x1, x2; τ)

dτ
= ε

∑
j∈M1

α̌j(x1 − v1
j , x2)P̌ (x1 − v1

j , x2; τ)− α̌j(x1, x2)P̌ (x1, x2; τ)

+
∑

j∈M2

β̌j(x1, x2 − v2
j )P̌ (x1, x2 − v2

j ; τ)− β̌j(x1, x2)P̌ (x1, x2; τ)

(8)

where the propensities functions are α̌1 = (xe0−x2)x1

xe0
, α̌2 = κ−1x2

κ1xe0
, β̌1 = κmx2

xs0+κm
and β̌2 = (xe0−x2)x1

xs0+κm
.

This cme (8) can be treated as common regular perturbation problem, that is, as ε→ 0 , the first
term of the right hand side of equation (8) is omitted, so the cme has a simpler form

dP̄ (x1, x2; τ)

dτ
=

∑
j∈M2

β̌j(x1, x2 − v2
j )P̄ (x1, x2 − v2

j ; τ)− β̌j(x1, x2)P̄ (x1, x2; τ) (9)

with fixed x1 = xs0 as

dP̌ (x1; τ)
dτ

= 0

when ε = 0 , so the molecular level of x1 will always remain at the initial level, xs0 .
Here, we use P̄ (x1, x2; τ) to replace the P̌ (x1, x2; τ) in order to show the difference between the

probability distributions of perturbed (8) and unperturbed (9) systems.
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Figure 1: The computed expected value of complex with E0 = 10 , S0 = 50 , κ1 = 0.01 , κ2 = 30 and κ−1 = 35 .
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Figure 2: The computed expected value of substrate with E0 = 10 , S0 = 50 , κ1 = 0.01 , κ2 = 30 and κ−1 = 35 .

2.3 Matching and uniform approximation

We compute the expected values of complex and substrate in both inner and outer regions, we con-
jecture that these solutions have a unique common limit at the edge of boundary layer. Consider now
ε → 0, τ → ∞ and T → 0 respectively, the common limit of the inner and outer solutions is defined
as

lim
ε→0

[Ẽ[Xi;T ]|T=0] = lim
ε→0

[Ě[Xi; τ ]|τ=∞] = ω

for i = 1, 2 and some positive constant ω . In other words, the inner and outer solutions are matched
if in the limit of ε→ 0, the expected value in inner region as τ →∞ is equal to the expected value in
outer region as T → 0.

Finally, add the inner and outer solutions together and subtract their common limit:

u (E[Xi; t]) = Ẽ[Xi; t/ts] + Ě[Xi; t/tc]− ω

This is the so-called uniform approximation for singular perturbation method which would be valid
throughout the time t ∈ [0 , tend] .
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3 Discussion

The cme in this paper is formulated based on a conjecture that the reactions involving both the
fast and slow species can be treated separately. The mm system is computed in two approaches: (1)
solve the cme (2) , and (2) apply singular perturbation method to the stochastic model and solve the
lower dimensional cmes. The singular perturbation method has provided a good approximation to
the multiple time scales system as shown in the Figure 1 and Figure 2 where the maximum relative
error for the expected values of complex and substrate are 0.002 and 0.01 respectively. The singular
perturbation method is very promising that by splitting the problem domain according to the different
time scales and applying perturbation techniques to each subdomain, the computations on lower
dimension cmes in the subdomains allow us to deal with higher dimensional stochastic problems.
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