
18th World IMACS / MODSIM Congress, Cairns, Australia 13-17 July 2009
http://mssanz.org.au/modsim09

Reinforcement learning for spatial processes

Forsell, N. 1,2, F. Garcia 1 and R. Sabbadin 1

1 Department of Forest Resource Management, SLU, Umeå, SWEDEN
1 Unité de Biométrie et Intelligence Artificielle, INRA de Toulouse, FRANCE

Email: nicklas.forsell@srh.slu.se

Abstract: Markov decision processes (MPDs) have become a popular model for real-world problems of
planning under uncertainty. A vide range of applications has been published within the fields of natural
resources management, forestry, agricultural economics, and robotics. An MDP can be used to represent and
optimize the management of an environment. A state variable is used to represent the current state of the
environment and the interaction with the environment is expressed with an action variable, allowing for
stochastic transition from one state to another state. A transition function is used to express the transition
between the different states of the environment, and a reward function expresses the rewards received by
applying an action when the environment is in a specific state. MDPs can thereby be used to optimize
management strategies for problems with uncertain effects of actions, multiple and conflicting objectives,
stochastic events, and stochastic environments.

A common problem when optimizing management strategies for natural resources is that large areas have to
be considered, rendering the state and action space of the MDP large. For example, an agricultural area
consisting of thousands of crop fields, or forests consisting of thousands of stands. Also, spatial aspects may
have to be considered. Some examples are management of epidemics, invasive or endangered species,
management to prevent wind damage and wild fire. However, the structure of the problem can be used to
model the problem on a compact form. For example is the probability of a tree being damaged by wind only
on the state of the neighbouring trees. This type of local dependency and internal structure can be used to
express the problem on a compact factored form. For example, instead of modelling the state of forest with a
single state variable, a set of state variables is utilized, each expressing the state of a part of forest. A number
of different representational models have been proposed for this type of problems. Factored MDPs and
collaborative multiagent MDPs are two frameworks that have recently received a loot of attention.

The graph-based Markov decision process (GMDP) framework has recently been developed specifically for
modelling a range of large-scale spatiotemporal problems. As the name suggests, the GMDP uses a graph
structure to represent the transition and reward functions on a compact form. Two algorithms for computing
approximate solutions for GMDPs have been proposed. The algorithms are capable of solving large-scale
GMDPs as their running time increases only linearly and polynomially with the size of the problem for a
fixed induced width of the graph. However, the algorithms are model-dependent and require the transition
and reward functions to be known. Simulation based models of the transition and reward functions can
therefore not be used. Since there are a large number of simulation based models of real-world management
problems, for example (Blennow & Sallnäs, 2004; Finney, 1994), the development of model-free solution
algorithms is an important extension of the GMDP framework and will increase the applicability of GMDPs.

In this paper, we describe a number of model-free reinforcement learning (RL) algorithms for GMDPs
derived from existing model-free RL algorithms for collaborative multiagent MDPs. The collaborative
multiagent MDP framework is similar to the GMDP framework in a number of aspects, and in this paper we
use these similarities to propose RL algorithms for GMDPs. The performance of the algorithms is compared
to model-dependent algorithms for a medium- and large-scale forest management problem. Our experimental
results show that the proposed RL algorithms are able to efficiently compute policies demonstrating near-
optimal performance. The policies computed by the RL algorithms are of similar quality to policies computed
by the model-dependent algorithms.

Keywords: Reinforcement Learning (RL), planning under risk and uncertainty, spatial processes, Markov
decision processes (MDPs)

755

Forsell et al., Reinforcement learning for spatial processes

1. INTRODUCTION

Markov decision processes (MDPs) are commonly used for representing and solving sequential decision-
making problems under uncertainty. Real-world problems are commonly described on a factored form,
making it possible to utilize the structure of the problem to compactly represent the transition and reward
functions either utilizing a factored MDP model (Guestrin et al., 2003; Boutilier et al., 2000), or a
collaborative multiagent MDP model (Guestrin et al., 2003). However, a common feature of factored MDPs
and collaborative multiagent MDPs models, is that the underlying MDP is large, rendering the computation
of high quality policies impractical. Graph-based Markov decision processes (GMDPs) (Forsell & Sabbadin,
2006; Peyrard & Sabbadin, 2006) is a recently proposed framework specifically developed for modeling a
range of large scale spatiotemporal problems. The framework was specifically developed for computing high
quality policies for large-scale problems. Two algorithms for computing near-optimal policies for large scale
GMDPs has been proposed (Forsell & Sabbadin, 2006; Peyrard & Sabbadin, 2006). However, the algorithms
are model-dependent and require complete knowledge concerning the transition and reward functions.
Simulated based models of the transition and rewards can therefore not be used.

In this paper we describe a number of model-free RL algorithms for GMDPs derived from existing model-
free RL algorithms for collaborative multiagent MDPs. The collaborative multiagent MDP framework is
similar to the GMDP framework in a number of aspects, and in this paper we use these similarities to propose
RL algorithms for GMDPs. The remainder of this paper is structured as follows. In Section 2 we review the
notion of MDPs, GMDPs and collaborative multiagent MDPs. In Section 3, we review several RL algorithms
and show how they can be adapted to the GMDP framework. In Section 4, we give experimental results on a
medium- and large-scale forest management problem. Finally, we present some conclusions in Section 5.

2. MARKOV DECISION PROCESSES

In the classical formulation (Puterman, 1994) a stationary MDP is defined by a four-tuple < X, A, p, r >
where: X is a finite set of possible states of the system; A is a finite set of applicable actions; p is a Markovian
transition function p : X  X  A  [0,1] such that p(x'|x,a) represents the probability of moving from state x
to state x' by applying action a; and r is an “immediate” reward function r : X  A   such that r(x,a)
represents the reward obtained in state x after taking action a. At each decision step, an action a is selected to
be applied, after which the system state changes from x to x'. The discrete set of decision steps is assumed to
be infinite. A (stationary) policy defines for each possible state of the system, which action to apply. A policy
is thus a function  : X  A, that assigns an action to every state. The infinite horizon, discounted,
cumulative reward associated with applying a policy  to an MDP, with initial state x, is defined through a
value function v : X  

  







 



0

0)(,)(
t

ttt xxxxrExv 
 (1)

The expectation is taken over all possible trajectories  = < x0, a0, x1, a1,…,xt, at,…> where, from the initial
state x, the policy  is applied. The discount factor, 0   < 1, ensures that the infinite sum in (1) converges.
The problem of finding an optimal policy *, solving the MDP, with respect to the discounted criterion (1)
can be written as: Find * so that: v*(x)  v(x), x  X,   AX. It has been shown that there always exists
an optimal policy for an MDP. A number of methods for computing the optimal policy have been suggested
(e.g. Bertsekas & Tsitsiklis, 1996; Puterman, 1994). However, these algorithms reach their limits when the
MDP is large.

2.1. Graph-based Markov decision processes

GMDPs are a class of MDPs, in which the state and action spaces are multidimensional and there are local
dependencies between the state and action variables. A GMDP is defined by a five-tuple < X, A, p, r, G >
where: X is a Cartesian product of finite sets X = X1 … Xn; A is a Cartesian product of finite sets A = A1
… An; p is a transition function; r is an reward function; and G is a directed graph G = (V, E) expressing
dependencies among the state variables Xi, i = 1,…,n. We represent the joint state of the system as x =
(x1,…,xn), and the joint action as a = (a1,…,an). Vectors of two or more variables values are highlighted in
bold. Upper case letters represent random variables (X, Xi), and lower case letters are used to represent the
value of the random variables (x, xi). The local dependencies expressed by the graph G = (V, E) are modelled
through a neighbourhood function: N : V  2V, which is defined on the graph by: N(i) = {j  V | (j,i)  E},

756

Forsell et al., Reinforcement learning for spatial processes

i  V. The transition and reward functions of the GMDP model are factorized according to the local
dependencies in the following manner:),|(),'()(

'

1 iiNi

n

i i axpp xaxx 
 , and 


n

i iiNi arr
1)(),(),(xax , where

xI = (xj1,…,xjk), jl  I, l = 1,…,k. No dependencies between the action variables Ai are expressed by the graph
as each local transition and reward function is only dependent on a single action variable.

Two algorithms for solving large-scale GMDPs have been suggested. One is based on Mean-Field
Approximation and Approximate Policy Iteration (MF-API) (Peyrard & Sabbadin, 2006), and the other on
Approximate Linear Programming (ALP) (Forsell & Sabbadin, 2006). Both algorithms compute an
approximate solution to the problem, and their running time increases polynomially and linearly,
respectively, with increases in the size of the problem for a fixed induced width of the graph. However, the
two algorithms are model-dependent and require knowledge concerning the transition and reward functions.

Figure 1. Forest stands and graph representing neighbouring relations between the stands when wind
directions are restricted to north and east.

GMDP Example: Forest management under risk of wind damage
In the forest wind damage problem, a manager needs to specify how a forest at risk of being damaged by
wind should be managed (Forsell et al., 2009; Meilby et al., 2001). The forest is divided into geographical
parts, called stands. Each stand is represented with a state variable Xi, representing the age of the stand: Xi 
{0-25 years, 25-50 years, 50-75 years, 75-100 years}. The state variables can thus be used to compute the
value of the timber (which is related to the age of the trees) in the stands. The stands are individually
managed and the management options are represented by action variables Ai  {clear-cut, do nothing}. The
dynamics of the process have a deterministic and a stochastic component. Natural aging and clear-cuttings of
the stands (replacing all trees in a stand with new, “zero-aged”, ones) are deterministic, while damage to the
stands caused by wind, which forces the forest owner to perform (possibly unplanned) clear-cuttings, occur
stochastically. The transition probability of a stand depends on the action locally applied, and the “shelter
effect” provided by its neighbouring stands. If a stand is sufficiently old, it can block the wind and decrease
the risk of damage to neighbouring stands. The probability of a stand being damaged by wind increases with
the aging of the stand, and decreases with the aging of the neighbouring stands. Here, the wind was assumed
to only come from two directions, each with equal probability. Figure 1 shows the probabilistic dependencies
between the local state variables. A reward is received when a stand is clear-cut and the reward increases
with the aging of the stand. A forced clear-cutting due to damage will only provide a small proportion of the
benefit obtained by clear-cutting the undamaged stand.

2.2. Collaborative multiagent MDPs

Collaborative multiagent MDP (Guestrin et al., 2003) form another class of MDPs. A collaborative
multiagent MDP is defined by a four-tuple < X, A, p, r > where: X is a Cartesian product of finite sets X = X1
… Xm; A is a Cartesian product of finite sets A = A1 … An; p is a transition function; and r is an reward
function. The numbers of local state and action variables do not have to be the same. The transition and
reward functions are factored as:),|(),'('

1
axaxx i

n

i i xpp 
 , and 


n

i i axrr
1

),(),(ax , where the local

reward and transition functions only depend on small subsets of local state and action variables. The system
is called multiagent as the number of agents interacting within the system is n, and collaborative as the agents
are trying to work together to optimize a shared performance measure. A GMDP can be seen as a special case
of a collaborative multiagent MDP, in which the number of local state and action variables is the same (n=m).

757

Forsell et al., Reinforcement learning for spatial processes

Each local transition and reward function only depends on a single local action variable, and a graph structure
(with n nodes) describes the dependencies between the local state variables. These similarities will now be
used to adapt a number of existing model-free collaborative multiagent MDP RL techniques to the GMDP
framework.

3. REINFORCEMENT LEARNING FOR GMDPS

Reinforcement learning (RL) (Sutton & Barto, 1998; Bertsekas & Tsitsiklis, 1996) is an approach that can be
used to solve MDPs with unknown transition and reward functions. It is a widely used simulation-based
approach that computes a solution to an MDP by iteratively improving an estimation of the optimal solution.
Recall that solving an MDP is the problem of finding the optimal policy *, where the optimal policy can be
characterized as the one that maximizes the expected discounted future reward (1) for each state x. The
expected discounted future reward can also be represented for each state x and action a, with the use of a Q-
function. A Q-function, also known as action-value function, represents the expected discounted future
reward for a state x when action a is selected to be performed:

  







 





))(,)(,),(0

0

0 axxxxxrEaxQ
t

ttt 
 (2)

The Q-functions can be used to characterize the optimal policy * as the one that maximizes (2) for each
state-action pair (x,a). The problem of solving an MDP is thus the same as the problem of finding the optimal
Q-function Q*. The approach is appealing as it has been shown that the optimal Q-function Q* satisfies the
Bellman equation (Sutton & Barto, 1998; Puterman, 1994):







Xx
Aa

axQaxxpaxraxQ
'

'
)','(*max),'(),(),(*  (3)

Reinforcement learning uses this observation to solve an MDP by computing an approximation of the
optimal Q-function Q*. The method iteratively improves an estimation of the optimal Q-function by
simulations. A trivial approximation of the Q-function is initiated, after which N trajectories  are simulated.
The trajectories start at a randomly selected state x0, and for each time step t, an action at is selected to be
performed. A commonly used strategy for exploring the actions is the ε-greedy strategy. In this approach the
greedy action a = argmaxaA Q(x,a) is selected with a high probability, while a random action is selected with
a small probability ε. After the action has been selected, the future state xt+1 and reward r(xt,at) are simulated,
based on the state-action pair (xt,at). After each simulation, the Q-function is updated with a combination of
the current and simulated values:

 )','(max),(),()1(),(
'

axQaxraxQaxQ
Aa

  (4)

where α  (0,1) is the learning rate. The RL approach is known to converge to the optimal Q-function Q*
when every state-action pair is sampled infinitely many times.

For GMDPs it is however necessary to decompose the Q-function. The optimal Q-function Q* can of course
be found by iteratively applying (3) to Q-functions defined over the joint state and action variables (x,a).
However, such an approach quickly becomes intractable for large problems, as a matrix of size |X|  |A| is
required to represent the Q-function. Instead, the global Q-function can be expressed as a sum of local Q-
functions, where each local Q-function is defined over a subset of the state and action variables, and is thus
of a manageable size. However, this is an approximation as generally the standard convergence proof for Q-
learning is no longer valid. How then, should the local Q-functions be defined, to restrict the loss of quality in
the computed policy while keeping the size of the local Q-functions at a minimum? Furthermore, how should
these local Q-functions be updated? Several decompositions of the global Q-function together with update
rules have been suggested for collaborative multiagent MDP (e.g. Kok & Vlassis, 2006; Guestrin et al., 2002;
Schneider et al., 1999; Claus & Boutilier, 1998). We now show how these algorithms can be adapted to the
GMDP framework and how they can be used to compute an approximate solution to a GMDP.

3.1. Decomposition of the global Q-function

Q-function decomposition methods for the collaborative multiagent MDP framework can be divided into two
general approaches. In the first, the global Q-function is decomposed over the agents in the system (5) - (7)
(Guestrin et al., 2002; Schneider et al., 1999; Claus & Boutilier, 1998). In the GMDP framework, this

758

Forsell et al., Reinforcement learning for spatial processes

implies that the global Q-function is approximated by a sum
of n local Qi-functions. Thus, it can be seen as decomposition
of the global Q-function over the nodes of the graph G = (V,
E). The following three versions of this decomposition
approach can be derived from the collaborative multiagent
MDP literature. In the second approach, is the global Q-
function decomposed over pairs of dependent action
variables (8) (Kok & Vlassis, 2006). In the GMDP
framework, this implies that the global Q-function can be
approximated by a sum of |E| local Qij-functions. Thus, it can
be seen as decomposition of the global Q-function over the
edges of graph G = (V, E).

3.2. Update rule

A number of update rules can be used when the global Q-function has been decomposed. Three update rules
have been proposed for the decompositions (5), (6) and (7) (Guestrin et al., 2002; Schneider et al., 1999;
Claus & Boutilier, 1998). We present them in the case where decomposition (6) is used:







 


),(max),(),()1(),(''

)()()()(' iiNi
Aa

iiNiiiNiiiNi aQaraQaQ
ii

xxxx  (9)



















 

 )(

''
)()()()(),(max),(),(),()1(),(

'
iNj

jjNj
Aa

iiNiiiNiiiNi aQjifaraQaQ
jj

xxxx  (10)

  ),()','(max),(),(),(
'

)()(axaxaxxx QQraQaQ
Aa

iiNiiiNi 


 (11)

These update rules can be adapted to the other decompositions, by changing the scopes of the local Q-
functions. The weight function f(i,j) defines how much Qj contributes to updates of Qi and is defined by the
user. If the global Q-function is decomposed according to the edge-based Q-functions (8), the local Q-
functions can be updated according to the following update rule:


















),,(max

|)(|

),(
),,()1(),,('''

)(
,

)(
)()('' jijNij

AaAa

jjNj
jijNijjijNij aaQ

jN

ar
aaQaaQ

jjii

x
x

xx  (12)

3.3. Algorithms

The decompositions and the update rules can be combined in a number of ways. Some specific combinations
have been described in algorithms that are well studied:

 Independent learners (IL) (Claus & Boutilier, 1998): The global Q-function is decomposed according to
(5), which are updated according to an adapted version of update rule (9).

 Distributed value functions (DVF) (Schneider et al., 1999): In this approach the global Q-function is
decomposed according to (6), and the components are updated according to (10). In the GMDP case, the
weight function can be defined according to the structure of the graph G = (V, E). A commonly used
approach is to apply equal proportionally over all neighbours and express the weight function as: f(i,j) =
1|i U N(j)|, if j  N(i), and zero otherwise.

 Agent-based decomposition for sparse cooperative Q-learning (AbSparceQ) (Kok & Vlassis, 2006): This
approach combines decomposition (6) with update rule (9).

 Edge-based decomposition for sparse cooperative Q-learning (EbSparceQ) (Kok & Vlassis, 2006): In
this approach the global Q-function is decomposed according to (8) and updated according to (12). A
drawback of this approach is that the update of Qi requires the knowledge concerning the actions (ai*,aj*)
that maximizes Qij: {ai*,aj*} = argmaxai'Ai,aj'Aj Qij(x’N(i) U N(j),ai',aj'). Two algorithms have been proposed
for computing this term, a variable elimination algorithm (VE) (Guestrin et al., 2003), and a max-plus
algorithm (MP) (Kok & Vlassis, 2006). The VE algorithm is exact and the MP algorithm is an
approximate alternative to the VE algorithm that is faster in computational time for large-scale problems.
We will only be using the VE algorithm as it is exact and always computes the optimal global action. It

   i
n

i
i aQQ ,,

1

xax 


 (5)

   iiN

n

i
i aQQ ,,)(

1

xax 


 (6)

   )()(
1

,, iNiN

n

i
iQQ axax 



 (7)

   jijN

n

Eji
ij aaQQ ,,,)(

),(

xax 


 (8)

759

Forsell et al., Reinforcement learning for spatial processes

should be noted that the VE algorithm is also required in the ε-greedy strategy, where the VE algorithm
has to be used to compute the greedy action.

 Coordinated reinforcement learning (CoordRL) (Guestrin et al., 2002): The global Q-function is
decomposed according to (6), and updated according to (11). As in the EbSparceQ approach, the VE
algorithm is required to compute the joint action a* = argmaxa’A Q(x’,a’), and the greedy action for the
ε-greedy strategy selection.

4. EXPERIMENTS

To evaluate the performance of the different decomposition and update rules, we used the forest management
problem described in Section 2.1. This particular problem was selected as the problem size in real-world
applications is often very large. Problems consisting of thousands of stands are commonly considered. The
problem therefore provides good illustration of the
abilities of a GMDP to handle extremely large state
and action spaces. However, as some of the described
algorithms are unable to tackle large-scale problems,
a medium-scale problem was first used to evaluate
the performance of the algorithms. The performance
of the scalable algorithms was subsequently evaluated
on a large-scale forest management problem. The
square topology presented in Figure 2 was used for
both problems.

To assess the quality of the algorithms in Section 3.3,
we compared them to the previously proposed model-
dependent ALP and MF-API algorithms, a heuristic
greedy policy, and a utopian upper bound on the
value of the optimal policy. Two additional
algorithms were also evaluated. The first algorithm
can be seen as an extended version of the AbSparceQ
approach as it combines decomposition (7) with
update rule (9). The second algorithm can be seen as
an extended version of the CoordRL approach as it
combines decomposition (7) with update rule (11).
The utopian upper bound on the value of the optimal
policy was computed by assuming that maximal
sheltering effect is always given to the stands by their
neighbours. This is a utopian bound since the shelter
provided by a stand varies with the age of the stand.
In our implementation a stand of age 75-100 years
provides 40% more shelter than a stand of age 50-75
years. The algorithms were tested on the problems
with the following parameters: α = 0.2, ε = 0.2 and 
= 0.9. All the Q-learning algorithms were initialized
with Q-values of zero, after which the learning
iterations were performed. There were 50,000
iterations for the medium-scale problem, 40,000
iterations for the large-scale problem, and every 2,000
iterations the policies were computed and simulated
with standard Monte Carlo simulations. The
estimated value of managing the forest according to
the policy was computed as the average over 50
randomly selected start points, where the value for a
specific start point was averaged over 100 44-step
long runs. The algorithms were implemented in
Scilab (2004) and tested using an Intel Pentium 3.6
GHz machine with 1 GB internal memory.

For the medium-scale problem, a forest consisting of
nine stands was considered. Figure 2 (top) and

Figure 2. Performance of the RL algorithms on the
forest management problem: (top) estimated value
of the computed policies for a forest consisting of 9
stands, (middle) estimated value of the computed

policies for a forest consisting of 100 stands,
(bottom) running time of the algorithms for the

forest consisting of 9 stands.

760

Forsell et al., Reinforcement learning for spatial processes

(bottom) show the simulated value and running time of the algorithms. The results show that three of the RL
approaches are able to compute a policy that is similar to the policies computed by the ALP and MF-API
algorithms in terms of estimated value. These are the EbSparceQ, AbSparceQ and the extended version of the
AbSparceQ approach. EbSparceQ and the extended version of the AbSparceQ approach gave similar results
in terms of the value of the computed policy and the computational time. They are however outperformed by
the AbSparceQ approach as its policy has a slightly higher value, and it is much faster. This is because it does
not consider coordinated action selection and therefore does not require the VE algorithm. For the large-scale
forest management problem a forest consisting of 100 stands was considered. This resulted in 4100 ≈
1.607*1060 joint states and 2100 ≈ 1.268*1030 joint actions. The RL algorithms evaluated on this problem were
the DVF, and CoordRL algorithms. The IL algorithm was not evaluated on this problem as it requires the
storing of matrices that are too large for the available computational resources. EbSparceQ, the extended
versions of AbSparceQ, and CoordRL were not evaluated on the large-scale forest management problem as
they require the VE algorithm whose computational time is too long for this large-scale problem. Figure 2
(middle) shows the estimated values of the policies computed by the algorithms. The results show that the
AbSparceQ algorithm is capable of computing a policy that is similar to the best policy computed by the ALP
and MF-API algorithms in terms of estimated value.

5. DISCUSSION

We have presented a set of model-free reinforcement learning algorithms for solving a GMDP. In contrast to
the previously proposed algorithms for solving a GMDP, the presented RL algorithms are model-free and do
not require knowledge of the transition and reward functions. This is an important extension of the GMDP
framework as there are large numbers of simulation-based models that can be used to simulate the
development of forest and agricultural areas over time, especially for the kinds of natural resource
management problems considered in this report (Gardiner et al., 2005; Blennow & Sallnäs, 2004).

REFERENCES

Bertsekas, D.P. & Tsitsiklis, J.N. (1996). Neuro-dynamic programming. Athena Scientific.
Blennow, K. & Sallnäs, O. (2004). WINDA-a system of models for assessing the probability of wind damage

to forest stands within a landscape. Ecological Modelling 175, 87-99.
Boutilier, C., Dearden, R. & Goldszmidt, M. (2000). Stochastic Dynamic Programming with Factored

Representations. Artificial Intelligence 121(1), 49-107.
Claus, C. & Boutilier, C. (1998). The Dynamics of Reinforcement Learning in Cooperative Multiagent

Systems. In: Proceedings of AAAI/IAAI pp. 746-752.
Finney, M.A. (1994). Modeling the spread and behavior of prescribed natural fires. In: Proceedings of 12th

Conference on Fire and Forest Meteorology pp. 138-143.
Forsell, N. & Sabbadin, R. (2006). Approximate Linear-Programming Algorithms for Graph-Based Markov

Decision Processes. In: Proceedings of ECAI, Riva del Garda, Italy pp. 590-599.
Forsell, N., Wikström, P., Garcia, F., Sabbadin, R., Blennow, K. & Eriksson, L.O. (2009). Management of

the risk of wind damage in forestry: a graph-based Markov decision process approach. Annals of
operations research

Gardiner, B.A., Marshall, B., Achim, A., Belcher, R.E. & Wood, C.J. (2005). The stability of different
silvicultural systems: a wind-tunnel investigation. Forestry 78(5), 471-484.

Guestrin, C., Koller, D., Parr, R. & Venkataraman, S. (2003). Efficient Solution Algorithms for Factored
MDPs. Journal of Artificial Intelligence Research 19, 399-468.

Guestrin, C., Lagoudakis, M.G. & Parr, R. (2002). Coordinated Reinforcement Learning. In: Proceedings of
ICML pp. 227-234.

Kok, J.R. & Vlassis, N.A. (2006). Collaborative Multiagent Reinforcement Learning by Payoff Propagation.
Journal of Machine Learning Research(7), 1789-1828.

Meilby, H., Strange, N. & Thorsen, B.J. (2001). Optimal spatial harvest planning under risk of windthrow.
Forest Ecology and Management 149, 15-31.

Peyrard, N. & Sabbadin, R. (2006). Mean Field Approximation of the Policy Iteration Algorithm for Graph-
Based Markov Decision Processes. In: Proceedings of ECAI pp. 595-599.

Puterman, M.L. (1994). Markov Decision Processes. New York: John Wiley and Sons.
Schneider, J.G., Wong, W.K., Moore, A.W. & Riedmiller, M.A. (1999). Distributed Value Functions. In:

Proceedings of ICML pp. 371-378.
Scilab--a free scientific software package, h.w.s.o., INRIA (2004).
Sutton, R.S. & Barto, A.G. (1998). Reinforcement Learning: An Introduction. Cambridge, MA: MIT Press

761

