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Abstract:  

In order to apply environmental models successfully, it is essential to determine model parameters very 
carefully. A direct determination of parameter values is often not feasible since they lack a clear physical 
meaning or field measurements are too expensive. Therefore, estimation of parameters is usually done by 
fitting model response and observation in a trial and error process. Depending on the model's complexity and 
the number of calibration parameters, this process is often too time-consuming. 

The Jena Adaptable Modelling System (JAMS) is a framework for component based model development and 
application, which was designed to meet current challenges in sustainable management of water resources. 
This task demands for integrated, flexible and easy to use environmental simulation models, which are able 
to simulate the quantitative and qualitative aspects of the hydrological cycle with a sufficient degree of 
certainty. 

Model calibration in JAMS is supported by a semi-automated assistant who guides the user step by step 
through the process of setting up the calibration procedure. The uniform structure of JAMS models allows for 
easy analyses and modifications of the model. This includes (i) automatic detection and removal of model 
components, which are irrelevant for model calibration, (ii) rearranging model components to speed up 
optimization and (iii) assistance in the parameterization of the optimization method.  

In this paper, three optimization methods are presented and compared to each other in order to depict our 
procedure. The first one is the Shuffled Complex Evolution algorithm (SCE). This evolutionary method has 
been used for hydrologic model calibration for some years. Branch \& Bound, a classical method based on 
properties of the objective function and with some interesting theoretical characteristics, is presented as 
second procedure. Finally, a radial basis function method is presented as a representative of the class of 
response surface based methods. This method is especially interesting for optimization tasks that involve 
high runtimes for single model evaluations and have shown very good results in optimization benchmarks. 
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1. INTRODUCTION 

The Jena Adaptable Modelling System (JAMS) is a modular structured environmental modelling framework 
which has been developed to meet current challenges in sustainable management of water resources. For this 
purpose JAMS provides special data types that can be used to describe the spatial and temporal domains. For 
flexibility and extensibility the interior control flow is not fixed but can be configured from outside, e.g. with 
special software components. It features functions for management and manipulation of environmental data, 
e.g. for reading and writing time series data or for unit conversion (Kralisch and Krause, 2006)  

During the last years a number of JAMS simulation 
components have been developed that cover various 
aspects of integrated water resources management, 
particularly hydrological modelling, nutrient 
modelling, parameter optimization and visualization 
of model results. An overview can be found in 
Kralisch et al. (2007). 

In order to apply these models successfully, it is 
essential to determine model parameters very 
carefully. A direct determination of parameter values 
is often not feasible since they lack a clear physical 
meaning or field measurements are too expensive. 
Therefore, estimation of parameters is usually done 
by fitting model response and observation in a trial 
and error process. Quality of parameter sets is usually 
quantified by error metrics like the Nash-Sutcliffe 
efficiency. This leads to a nonlinear single objective optimization problem. In practice, it is hard to find a 
best parameter set, because often the objective function is not smooth or even discontinuous, the feasible 
parameter space can consist of multiple large attraction areas, each containing numerous local optima. Local 
search methods can get stuck in them far from a global solution. Usually calibration runtime is scaling 
exponentially with parameter quantity. This is known as Curse of dimensionality (Bellmann, 1966). Modern 
environmental models can have many parameters, making optimization very time consuming. Altogether, it 

is neither advisable nor feasible to manually calibrate 
a complex model. However, to overcome this 
problem a lot of research work was spent in the 
development of efficient automatic calibration 
methods (Yapo et. al., 1998). The following sections 
will provide an overview about optimization 
techniques and their applications in JAMS. 

2. JENA ADAPTIVE MODELLING SYSTEM 

JAMS have been developed with the main objective 
to create models that can simulate environmental 
processes at discrete points in time and/or space. This 
approach is widely-used by many distributed 
hydrological models applied in current practice. 
JAMS provides two specific types of building blocks, 
named components and context components. 
Components are used to implement specific 
knowledge as process algorithms whereas the model 
structure and the component's execution control is 
defined by the context components. As a benefit from 
this approach, an environmental process (e.g. 
potential evapotranspiration) can be implemented as a 
JAMS component without any knowledge about it's 
later execution context, e.g. the temporal resolution 
or the type of spatial discretisation of the modelled 
area. The only precondition for the later application 

Figure 1. Common structure of spatial distributed 
environmental simulation models in JAMS 

Figure 2. Model structure for search based 
parameter optimization 
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of a component in conjunction with others is the proper declaration of it's desired input data and provided 
output data by means of metadata in the component's source code. Context components in JAMS define the 
model structure that is needed to represent the necessary temporal and spatial iteration loops. This can be 
accomplished by managing the repeated execution of other components while varying their sets of input data. 
Each set of input data may then represent one point in time (temporal context) or space (spatial context). A 
context component in JAMS can thus be seen as a scope that defines an environment for the execution of 
other software components. Together with another context (model context) that manages the execution of the 
real simulation, the above-mentioned environmental models can easily be produced. 

Figure 1 shows the different contexts and the workflow usually executed within them. In addition to the 
layout shown in this illustration, a JAMS model can include more than only one temporal or spatial context. 
As an example, a simulation model considering hydrological processes in the river channel could additionally 
include a second spatial context managing the iteration over river reaches and the execution of appropriate 
process components at a time. 

JAMS calibration methods were implemented as context components. Due to the flexibility of the JAMS 
framework and the generality of the applied methods, only a minimum of knowledge about the model to be 
optimized is needed. Only the relevant model 
parameters, the objective function and method 
dependent parameters must be made available to the 
calibration component. 

The resulting JAMS model structure is shown in 
figure 2. The calibration context component encloses 
the model to optimize, can access its parameter values 
and controls its execution. Since every search based 
optimization procedure comprises the two tasks 
search and evaluation, this setup depicts a general 
structure for any search based parameter calibration 
component in JAMS.  

3. OPTIMIZATION METHODS 

In the last two years some calibration methods were implemented for the JAMS framework. An overview 
about three selected optimizers is given here. 

3.1. Shuffle Complex Evolution 

The SCE-UA (Shuffle Complex Evolution - University of Arizona) algorithm was introduced by Duan et al. 
(1992). This evolutionary optimization method was developed especially for the application of parameter 
optimization in hydrological models.  

The core idea of evolutionary optimization methods is to treat the optimization problem as a natural 
evolutionary process. Main subject of SCE-UA is therefore a population of samples - each of them 
representing one solution candidate. This population is divided into complexes that evolve independently 
from each other. In order to create new samples, sub complexes are formed which act as parents. While 
generally every sub complex is able to produce a new sample, promising sub complexes are preferred in this 
reproduction step. The produced children must fulfil some minimum requirements before they are added to 
the population and supersede the currently worst sample. After some iterations of reproduction, the 
complexes are joined. The process of complex segmentation and reproduction is repeated until no further 
improvement of the samples fitness can be accomplished.  

In figure 3 the ackley function (Ackley, 1987) is shown. It is characterized by a very bumpy surface leading 
to many small local optima. The global optimum is located at zero. Points sampled by SCE-UA are marked 
green. Some of them are scattered all around the parameter space, these were mostly generated in the 
beginning when SCE-UA searches more globally. But the mass of dots is located near zero, because SCE-UA 
concentrates its activities near the optimum later on. 

Figure 3. SCE-UA: Surface of the ackley function 
and the first 200 sampled points are marked in green
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The SCE-UA algorithm shows good convergence for a vast variety of problems, meaning that with a 
sufficiently high (fixed) number of model evaluations the method has a fairly high probability to find the 
global optimum. 

3.2. Branch & Bound 

The class of Branch & Bound algorithms has a long 
history in mathematical optimization. The common 
strategy of these methods is to partition the problem 
into smaller sub problems (Branch), choose one of 
the sub problems and recursively apply this strategy. 
As soon as all sub problems have been solved, the 
solution of the original problem is also known.  

Our implementation expects the feasible parameter 
space to form a d-dimensional rectangle. Subdivision 
is performed by bisecting the rectangle at its longest 
edge obtaining two new rectangles. If iterated over all 
sub problems, very poor runtime performance and 
huge memory usage will be the result. To avoid this, a strategy of rejection is needed. For each sub problem a 
lower bound is obtained by solving a relaxed problem. Based on the calculated lower bounds a promising sub 
problem is chosen in the next step. Sub problems with bounds worse than the best parameter set so far can be 
discarded. To obtain these bounds, Lipschitz-continuity of the objective function is assumed. For the 
approach, the Lipschitz-constant L must be known or at least approximated. 

This process of branch and bound is recursively iterated. Under some weak assumptions, the discovery of the 
global optimum can be guaranteed. It can be shown that the value of the lowest lower bounds will converge 
towards the optimum. Hence, if the distance between the best sampled point and its lower bound is smaller 
than a prespecifed value, optimization will be stopped. 

A detailed explanation of this algorithm is given by Horst et al. (2000). Figure 4 shows the behaviour of the 
Branch & Bound algorithm in respect to the ackley function. After five iterations the parameter space is 
partitioned into six rectangles. For every sub problem a fairly good lower bound was calculated, so that the 
rough position of the global optimum is already 
identified. 

3.3. A radial basis function (RBF) method  

This method is especially suited for optimizations 
with expensive function evaluations. Due to the 
strategy of surrogate based optimization, it is capable 
of finding a rough estimate of the solution within a 
few iterations in most cases. By interpolating already 
sampled points with radial basis functions, a surrogate 
of the objective function´s response surface is 
generated.  

This helps to select parameter sets for evaluation very 
carefully. Before a new sample x is drawn, it is tested whether it is reasonable to assume an optimum there. 
Therefore, a hypothetic sample x is interpolated, which is slightly better than the best parameter set found so 
far. If this leads to an odd and bumpy interpolation, the assumption was not justified. On the other hand, a 
smooth interpolation gives reason for searching an optimum there. Based on that objective the algorithm 
searches the next candidates for evaluation by using a standard optimization routine. Thus the optimization 
algorithm itself needs a large amount of processing power. However, if function evaluations are very 
expensive this is negligible. A detailed description of the RBF method is given in Gutmann (2001). 

It was also observed that the method finds the approximate optimum fast, but converges rather slowly. To 
avoid dispensable computing time the optimization is stopped after a fixed number of iterations and the 
nelder mead downhill simplex method is taking over to determine the exact location of the optimum.  

Figure 4. Branch and Bound algorithm: The red 
rectangles show the lower bounds of the sub 

problems after 5 iterations 

Figure 5. RBF procedure: Interpolated ackley 
function after 100 function evaluations 
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Figure 5 shows the interpolated surface of the ackley function after 100 samples drawn. The interpolation is 
much smoother than the original and the minimum about zero has not reproduced very well yet, but the 
general shape of the ackley function is clearly recognizable. 

4. CALIBRATION ASSISTANT 

For the calibration of JAMS-models, various adjustments of the model structure are desirable, e.g. selection, 
insertion and parameterization of the optimization component, removal of visual output components and 
selection of in- and output data. A software wizard provides support in this task and guides the user step by 
step through the process of calibration and gives assistance whenever possible. 

4.1. Optimization procedure setup 

As a first step of the calibration setup procedure, the model is loaded and the list of available parameters is 
presented to the user. Following, feasible value ranges of the selected parameters and one or more objective 
functions (e.g. Nash-Sutcliffe efficiency) need to be selected from a list. Based on this information, suitable 
optimization methods are proposed and parameterized with default values. For fine tuning, these 
parameterizations can be adapted. A comprehensive description of all values helps to choose well-performing 
parameters. Finally the software wizard automatically generates the calibration environment.  

4.2. Model adaption 

 In order to maximize runtime performance of the model and accordingly of the calibration procedure, all 
components that are not needed to ultimately compute the objective function can be removed. In order to 
identify those components, a dependency analysis of the model is being applied based on the components’ 
input and output data. Figure 6 shows some examples. Assume that component A provides data, which need 
to be accessed by component B. Thus B is directly dependent of A. Assume another component C reading an 
attribute, which is written by B. Now C is indirectly dependent of A. Such a graph can easily be created for 
complex environmental models, e.g. for the model J2000, whose dependency graph is sketched in figure 6c.  

Based on these graphs the model structure can be further analyzed. A component which is not connected with 
the objective function component does neither directly nor indirectly use any data generated by that 
component. That means such a component has absolute no effect on the objective and is therefore eliminated.   
Because every component provides information about their attributes this analysis is done fully 
automatically. Usually, these are components for visualization and data-output. In addition, components can 
be identified that have influence on the objective function, but are independent of the parameters in 
calibration, e.g. data-input processes. Under specific circumstances, these processes can be executed only 
once before calibration starts, thereby saving execution time. In order to make sure that each model starts 
with identical initial conditions, a snapshot of the complete model is being taken.. At each model execution in 
the course of the optimization procedure, this snapshot is being restored in advance. 

 

(a) Component B directly 
depending on A 

 

(b) Component C 
indirectly depending on A 

 
(c) Partial dependency graph of J2000 

Figure 6. Different dependencies between components 
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name range description 

snow module 

tfac [0;5] 
controls the linear effect 
of temperature on the 
potential snow melt rate 

rfac [0;1] 
determines increase of 
potential snow melt rate 
by rainfall 

TBase [-5;5] 
threshold for deciding 
whether precipitation is 
snow or rain 

soil module parameters 

concRD1 
[0;10] retention coefficient for 

direct runoff 

concRD2 
[0;10] retention coefficient for 

interflow runoff 

VertLPS [0;10] 

calibration coefficient 
distributing the outflow 
from large pore storage 
to lateral interflow and 
vertical percolation. 

Table 1.  Selected calibration parameters of the 
J2000 model 

5.  PARALLELIZATION 

The calibration task can be accelerated enormously by taking advantage of parallel computing systems.  
Therefore, a version of SCE-UA was developed, which is using GridGain (http://www.gridgain.com). 
GridGain is a Java based framework to support programming in distributed computing systems. It is suited 
for most architectures of parallel computing systems, but was especially designed for computing in grids. A 
grid is a collection of loosely connected computers, forming a powerful high performance supercomputer 
(Foster and Kesselmann, 2007).  

 Modellers, who want to calibrate a model, only have to choose the parallel SCE-UA optimization context. 
Everything else seems like it is running in a single process at the local computer. The framework searches 
independently for available nodes in the network and distributes incoming task as well as required resources 
among them. If a node fails to finish a task, it is detected automatically and the affected task is moved to 
another node. After execution output data is transmitted to a central node, where it is prepared for further 
processing. 

SCE-UA manages one or more complexes during execution. The evolution of each complex is mostly 
independent of other complexes. This property allows simple parallelization of SCE-UA by allocating a 
computing-node for each complex. Communication between computing-nodes is reduced to synchronization 
and redistribution of complexes at the beginning and the end of each iteration.  

The implementation was tested in a cluster environment 
consisting of 32 AMD Opteron Dual Core CPUs, where 
always four CPUs share their memory. The nodes are 
connected by a gigabit Ethernet connection. Sixteen nodes 
were assigned to GridGain. Accordingly, SCE-UA was 
started with sixteen complexes. In comparison to the serial 
execution, a very good speedup of 14 was reached, i.e. 
compared with the single machine optimization the 
GridGain procedure took only a 14th of its runtime. 
However this simple strategy is limited by the number of 
complexes. Further parallelization could be achieved with 
a modified nelder mead algorithm presented by Kolda 
(2006). 

6.  APPLICATION 

The hydrological model J2000 allows the physically based 
simulation of the water balance in meso and macro scale 
catchments. It follows a distributed spatial approach and 
simulates the hydrological cycle on a daily basis. A 
detailed description is given by Krause and Flügel (2001).  

To test the calibration methods presented in section 3, 
some modules of a J2000 model were selected for 
calibration. For this purpose the meso scale catchment of 
the Wilde Gera, located in middle Germany, was chosen. 
Table 1 shows the selected parameters under calibration 
and their feasible ranges. The Nash-Sutcliffe efficiency was selected as objective function. Parameterization 
of the calibration methods was easy, because the Branch & Bound and RBF methods do not possess any 
parameters and SCE was used with two complexes.  

Subsequent analysis of the model structure showed that the original model contained 61 components, 23 of 
which were identified as redundant for optimization. 8 of these 23 were GUI components, while the others 
were performing calculations which did not affect the runoff, e.g. temporal aggregation of model results. 
Furthermore, 14 components were identified to be completely independent of the parameters in calibration. 
They were executed only once before optimization begins. With these modifications, only 24 components 
stayed inside the calibration context. As a benefit from these modifications, model evaluation is done 8.8%
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faster, but produces exactly the same results. These modifications could have been made by hand, but that 
would be fault-prone and would require much effort during setup.  

The results of the application of the presented 
methods are shown in fig. 7. As can be clearly seen, 
all methods are able to calibrate the model and result 
in identical values of the objective function. The 
Branch & Bound method proved to be the fastest and 
found an optimum after only 100 iterations. The RBF 
method is also very fast in finding a good parameter 
set, but shows slow convergence and finally needed 
about 1000 iterations. Also SCE performs well. It 
finishes optimization after 500 iterations.  

7. CONCLUSIONS 

This article gives an overview about calibration of environmental models with the JAMS - framework. The 
framework is described briefly and it is justified why calibration of environmental models is necessary and 
why automatic calibration methods are unavoidable nowadays.   

Subsequently three optimization methods are presented, which have been implemented as JAMS contexts. 
These are the Shuffled Complex Evolution method, a Branch & Bound method and a radial basis function 
method. In case of the SCE method a parallel implementation was presented. It was shown how a calibration 
assistant can guide an inexperienced user through the setup of the calibration process. Additionally, this 
assistant is able to analyze the model structure and perform modifications for faster model execution. An 
application of the presented optimization methods showed that every method perform well. Modifications of 
the model structure lead to an enormous improvement; model execution time was reduced by 8.8%. 
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