
18th World IMACS / MODSIM Congress, Cairns, Australia 13-17 July 2009 
http://mssanz.org.au/modsim09 

A Modular Spatial-Temporal Modeling Environment for 
GIS  

Marchionni, B. 1, Ames, D. 1, Dunsford, H. 1 

1 Geospatial Software Lab, Department of Geosciences, Idaho State University, Idaho 
Email: marcbria@isu.edu  

Development of an open source modeling environment for use with spatial-temporal data in a Geographic 
Information System (GIS) is presented. MapWindow GIS, a free and open source desktop GIS, has been used 
extensively in watershed modeling and is the underlying engine of the U.S. EPA BASINS system.  

To date, legacy versions of MapWindow have lacked an integrated modeling environment suitable for 
linking together geospatial and temporal independent processes at a granular level. New developments in the 
open source MapWindow GIS 6 project have created the basic framework for an extensible modeling 
environment. This new modeling environment allows users to easily create models which can take advantage 
of spatial and temporal data objects and analytical tools.  

The design approach involves the extensive use of interfaces which are essentially skeleton programming 
tools that detail how an object programmatically interacts with other objects, but not necessarily how it works 
internally. By using interfaces, the new MapWindow GIS modeler makes it relatively simple to take existing 
modeling processes, wrap them in an appropriate interface, and execute them as part of a more complex 
model. By using interfaces any one component of the modeler can be replaced by any other object that 
implements the same interface. The central underlying design consideration of the newest version of 
MapWindow GIS was to keep the entire project as modular as possible.  

The developed modeler uses a simple interface to define how processes or tools should interact with other 
model components. The tool interface requires developers to specify a number of simple methods on their 
tool’s object which are then called by the model when the tool is loaded. Developers need not spend time 
designing the user interface for their tool as it is automatically generated by the modeler when their tool is 
instantiated. Because all tools in the MapWindow modeler must implement the same interface, developers 
wishing to use a tool directly in their own application need not add the modeler if they do not so desire. By 
adding a reference directly to the tool they want to use they can gain access to all of the same methods that 
would be exposed to them if they worked with it through the modeler.  

MapWindow GIS 6 and the modeler are entirely developed using the Microsoft .NET Framework which 
allows it to be run on a variety of operating systems including Windows, Linux or OS X (via the Mono 
compiler). 

Keywords: GIS, Interface, Model, GUI, MapWindow, Spatial, Temporal 

916



Marchionni et al., A Modular Spatial-Temporal Modeling Environment for GIS  

1. INTRODUCTION 

The goal of the project described here was to develop a modeling environment for the next generation of the 
MapWindow project, MapWindow GIS 6. MapWindow GIS 4 is the current version of the project and is 
under continued development at Idaho State University in the Department of Geosciences. MapWindow GIS 
5 was a short-lived prototype project that was never released publicly. Originally developed at Utah State 
University, and now maintained primarily at Idaho State University with an international development team, 
MapWindow GIS is a free and open source software project that is downloaded over 6000 times per month. 
It has an active community of users and developers on the MapWindow.org web site. The community 
collaborates on making updates and introducing new features. The existing project is divided into two 
components: the MapWindow GIS desktop application, and the ActiveX map control. These two components 
work together to form the entire project. This modularity allows the ActiveX control to be used in other 
stand-alone applications as well as within the main MapWindow GIS desktop application. (Ames et al., 
2007) 

The need to develop a modeling environment arose from other developments in the GIS community. A 
general need to simplify the task of using spatial and temporal processes had been brought forward by many 
MapWindow users and by several other communities who are using the MapWindow components in their 
own projects. Furthermore, the use of modeling in a GIS environment has been suggested by several other 
researchers including Xie and Brown in their 2007 paper noting, “simulation in spatial analysis and modeling 
has been one of the key approaches of many researchers of GeoComputation.” (Xie and Brown, 2007) 

Requirements for the developed modeler are tied to other developments in the MapWindow 6 development 
effort and include: 

• all user interfaces need to be as simple to use and as well documented as possible; 
• users should need no programming experience to use the project; 
• the project must have high portability, software should work on many different systems including MS 

Windows, Linux and Macintosh OS X; 
• the code needs to be highly extensible and reusable; 
• the code should be easy to maintain for new developers. 
 
The modeling environment should also be designed such that it can be integrated into other applications with 
minimal dependency on external libraries, including the MapWindow.dll itself. Since the design of 
MapWindow GIS 6 was well underway at the time of the modeling environment’s conception, it was decided 
that components and data types from this new architecture would be used because of the advantages that it 
afforded. 

2. MAPWINDOW GIS 6 

MapWindow GIS 6 is the next generation of the 
MapWindow project. Early in the planning stages of 
MapWindow GIS 6 it became apparent that the 
technology behind the original MapWindow 
ActiveX map component would not be capable of 
meeting all of the new project’s requirements. 
Specifically since the original code was written as a 
Microsoft COM object it could never be cross 
platform compatible. It was primarily for this reason 
it was decided that a complete rewrite of the map 
component would be required.  

The design of the new architecture focused on an 
extremely modular system using class interfaces. 
Figure 1, highlights the interface architecture of 
MapWindow GIS 6. This design allows for any 
single component to be replaced by another that 
uses the same interface. This design stemmed from 
the successful plug-ins methodology from the 
original MapWindow GIS 4 that allowed third party developers to extend the functionality of the application 
by writing their own class which implements the plug-in class interface. (Ames et al., 2007) 

MapWindow GIS 6

Plug-in Interface

Third Party 
Plug-ins

Legend 
Component

Map Component

Data Provider Interface

Third Party Data 
Providers

 

Figure 1. MapWindow GIS 6 Architecture 

917



Marchionni et al., A Modular Spatial-Temporal Modeling Environment for GIS  

3. THE MAPWINDOW MODELER PROJECT 

3.1. Project Requirements 

The MapWindow Modeler environment has been developed specifically to meet the requirements of several 
uses cases identified by the United States Environmental Protection Agency (EPA) Data for Environmental 
Modeling (D4EM) project. Some of the key requirements and constraints of the system are defined as follow: 

• the tool should be written in Microsoft .NET so that it can be ported to Windows Mobile and Mono for 
Linux; 

• the available tools and available data types should be extensible; 
• the tool should integrate both spatial and temporal components; 
• the tool should be easy to use for end users; 
• the tool should be compatible with existing versions of MapWindow GIS; 
• the tool should be robust and easy for new developers to add to and enhance. 
 
Several existing open source projects were identified to see if they could meet the requirements for a 
modeling tool for MapWindow. Sextante (Olaya and Gimenez, 2007) meets all of the requirements, except 
that it is written in the Java language and hence would not meet the requirement of being written in Microsoft 
.NET. No other open source modeling products that were available were written in Microsoft .NET and could 
handle both spatial and temporal data interaction. The OpenMI system (Gregersen et al., 2007) was examined 
but it, too, failed to meet all of the requirements of the system as its scope went well beyond a simple 
graphical tool for link spatial and temporal processes.  

3.2. Use Cases 

There are three primary use cases for the modeling environment. The first covers the modelers’ use while 
integrated into MapWindow GIS 6. In this mode a standard extension to the MapWindow GIS 6 desktop 
application will include the modeling environment. These two environments are tightly linked to allow data 
from the MapWindow GIS 6 map component to be added seamlessly from the modeler and conversely allow 
data from the map to be used in models. The second use case involves integration with the legacy code of 
MapWindow GIS 4. This is similar to integration with version 6 of MapWindow, but only a specific subset 
of the data will be made available to the MapWindow GIS 4 application because of format compatibility 
issues. The final use case covers using the modeler as a stand-alone component for use in third party 
applications. Since all possible uses of the modeler in other applications cannot be considered, the modeler 
must be as versatile and customizable as possible. 

3.3. Software Design Technique 

Since many different users and developers will be working with the system, the initial design specifications 
needed to be well defined at the outset. Once this initial design was completed a small group of developers 
created a set of simple tools to test the general design. It was at this stage that critical modifications were 
made to the design to address specific problems that developers and users were facing.  

This approach of rapid prototyping allows for feedback from testers and other developers while ensuring a 
quick time to deployment. Initial development efforts took only six months. Once this critical initial 
development stage was completed the second phase continued until such time as all parties involved are 
satisfied with the resulting architecture. Once completed most major design considerations were done and the 
over all architecture finalized. While changes can still be made at this point they must take into account the 
existence of other dependant components that need to be integrated and cannot have their functionality 
impaired. For example, if a new version of an interface is created once this second stage of development is 
completed it must ensure that any components using the already existing interface must continue to function 
seamlessly.  

This second stage of development is potentially the most important as it is feedback from developers creating 
tools that will ensure the ease of use of the interface for new developers wishing to create tools or data types 
for the system. 

918



Marchionni et al., A Modular Spatial-Temporal Modeling Environment for GIS  

4. SOFTWARE DESIGN 

4.1. Modeler Design 

The MapWindow modeler is composed of two 
inter-related parts: the ToolManager and the 
Modeler. The ToolManager lists all of the 
available tools to the user while also providing 
access to tools in the Modeler. The Modeler 
displays, loads, saves, and executes models in a 
graphical environment. 

The Modeler and ToolManager itself are actually 
.NET form component. Like other programming 
objects in the .NET environment it has a graphical 
representation that allows programmers to drag 
and drop it onto a form without writing any code. 
This greatly reduces the time needed for 
programmers to develop an application that uses 
the modeler. Figure 2 shows an instance of the 
ToolManager on the left displaying the tools it has 
found, and the Modeler on the right displaying a 
simple model containing one tool. 

4.2. Building for Extensibility 

Since the use cases for the modeler cover many different applications it was imperative that the modeler be 
designed such that it can be extended in several different ways, such as:  

• tool definitions; 
• parameter definitions; 
• user interface representation of parameter definitions. 

To allow each of these areas to be expanded upon, several programming concepts needed to be employed. 
These concepts are widely used through the architecture of MapWindow GIS 6 so programmers familiar with 
this environment can more easily add functionality to the modeler. 

To accomplish this, a class interface was defined for tool definitions and parameter definitions called ITool 
and IParameter respectively. Using interfaces, blank class templates which programmers can populate with 
functions (Liquori and Spiwack, 2008), allows developers to rapidly develop software which implements the 
needed operations of software they are interacting with. (Greenberg, 2007) “A well-recognized method for 
reducing program complexity involves structuring the model as a set of distinct modules with well-defined 
interfaces.” (Maxwell, 1999) Since tools and parameter types can be generated in a variety of different ways, 
the Modeler never loads ITools or IParameters from disk directly; rather, it relies on a ToolManager to 
handle loading, and instantiating tools, and parameter types as needed. The ToolManager loads tools by 
scanning specified folders for assemblies that implement the IToolProvider interface. Once a class that 
implements this interface is found it is instantiated and queried for a list of the tools it is capable of 
providing. This allows tool providers to create tools from a wide variety of sources. A default tool provider is 
included in the ToolManager. This tool provider scans specified folders for assemblies which implement the 
ITool interface directly. Loading of parameter definitions and their user interface is also done the same way 
with the ToolManager looking for assemblies that implement the IParameterProvider interface, and a default 
provider which scans for IParameter implementing assemblies. 

4.3. The ITool and IToolProvider Interfaces 

The goal of the ITool interface is to remove the burden of creating a user interface and maintaining tool 
interoperability from the tool developer. Developers designing tools need only implement the ITool interface 
when designing their tool and the ToolManager generates the graphical user interface automatically for them 
when the tool is instantiated. Figure 3 illustrates the form that is automatically generated when the Inverse 
Distance Weighting tool is created. Note the help text on the right is automatically displayed when the user 
highlights a particular input parameter. Status lights on the left side of the parameter field display the 

 

Figure 2. The ToolManager and Modeler running in 
Mono on Mac OSX 

919



Marchionni et al., A Modular Spatial-Temporal Modeling Environment for GIS  

parameters’ validity. The ITool interface contains all the information necessary for running and displaying a 
tool. 

The IToolProvider interface allows tools to be 
generated in a wide variety of ways. While the 
default ToolProvider searchers folders for assemblies 
that contain ITools, there are many other ways that 
tools could be generated. For example a ToolProvider 
could connect to a Web Processing Service, get a list 
of available tools, and then generate a corresponding 
set of ITools which would then be in charge of 
instantiating for the ToolManager. 

Tools can also be generated by the Modeler. This is 
done by saving the model which includes several 
tools to a XML file which can then be opened by the 
ToolManager as a stand alone Tool, capable of being 
executed independently of the Modeler. As long as 
each of the Tools used to create the model are 
available to the ToolManager at execution time, the 
new Tool can be run. 

4.4. The IParameter and IParameterProvider Interfaces 

Parameters are the input and output of a tool and 
need to be defined so that they can have an 
appropriate visual representation. For example a 
numerical parameter should allow for a minimum and 
maximum value to be specified tolimit the users’ 
input to a certain range. It should also be capable of 
specifying a default value and be represented on the 
tool dialog by a text box that will only accept 
numerical values. This can be accomplished by 
creating a parameter object that specifies these 
constraints and contains a control object that 
represents how the parameter should be represented 
in the tool dialog. Figure 4 displays the IParameter 
base interface, which all parameters must implement. 
Figure 5 displays the List Parameter component 
which implements the IParameter interface. 
IParameters are responsible for generating two 
graphical components, one for input and one for 
output parameter configurations. This ensures that 
parameters must act differently before inputs and 
outputs can be handled. 

The IParameterProvider interface defines how ParameterProviders define parameters for tools. Tools that use 
parameter types defined by a specific ParameterProvider must reference that provider and design time. When 
loading, the ToolManager first generates a list of all Parameter types that have been defined, querying each 
of the ToolProviders that have been detected, and requesting a list of parameters that the provider supports. 
Once all of the known parameter types have been loaded, the ToolManager then loads the ToolProviders. 
This ensures that all of the parameter types are known before the tools are instantiated. 

 

Figure 3. The Inverse Distance Weighting tool dialog 
running in Mono on Mac OSX 

 

Figure 4. The IParameter base component as it 
appears in the Microsoft Visual Studio designer. The 

base component is never seen in the modeler  

 

 

Figure 5. The List Parameter component as it appears 
in the Microsoft Visual Studio designer 

 

920



Marchionni et al., A Modular Spatial-Temporal Modeling Environment for GIS  

 

4.5. Tool and Model Execution 

Once a tool is called to be executed, either on its 
own or integrated into a model, a background 
thread is started to carry out the tool’s execution. 
A separated thread is used to ensure that the tool 
progress dialog remains responsive to user 
activity. Messages from the background thread are 
relayed to the foreground progress dialog thread to 
allow progress indicators to be updated by the 
tool. Figure 6 displays the progress indicator form 
running a tool. In the event of user cancellation, 
tools are responsible for cleanly exiting.  

4.6. Modeler Architecture Overview 

The Modeler and ToolManager are intentionaly modular, and any single component can be replaced with 
another, which satisfies the interface requirements of that component. Not all components are necessary for 
the entire environment to work. If, for example, the Modeler was not included in a project because it was not 
needed, the ToolManager could be included by itself as a visual component or as a instantiated object 
invisible to the end user. This high level of interchangability ensures that the components of the modeling 
environment can be used to meet the widest ranges of developer needs. Figure 7 displays the overall 
architechture of the entire MapWindow Modeling project. 

 

 

Figure 6. Progress indicator dialog 

ToolManager 

Modeler

IModeler Interface

IToolProvider Interface

Third Party
ToolProviders

Default 
ToolProvider 

ITool Interface

Third Party 
Tools

IParameterProvider Interface

Third Party
Parameter-
Provider

Default 
Parameter-
Provider

IParameter
Interface

Third Party 
Parameters

  

Figure 7. MapWindow Modeler Architecture 
 

921



Marchionni et al., A Modular Spatial-Temporal Modeling Environment for GIS  

5. DISCUSSION AND CONCLUSIONS 

The MapWindow GIS Modeler is a versatile modeling environment, which can handle many different data 
types. Due to its modular and extensible architecture it can use tools of many different designs. The design 
flexibility not only allows tools to function in a wide variety of different ways, but it allows tools and their 
associated parameters to be generated from any number of sources. Its ease of use for end users and 
developers, as well as its integration with MapWindow GIS 6 and MapWindow GIS 4, ensures that the 
widest range of users will have access to the program. 

By building on the successful design of previous generations of MapWindow GIS, the MapWindow Modeler 
benefits from all of the development expertise, keeping the designs that were the most effective while 
eliminating some of the more constrictive problems. It is one more tool available to both developers looking 
to create new modeling tools and end users wishing to create models with such tools. 

REFERENCES 

Ames, D., Michaelis, C. and Dunsford, T., 2007. Introducing the MapWindow GIS Project. The Journal of 
the Open Source Geospatial Foundation, 2. 

Greenberg, S., 2007. Toolkits and interface creativity. Multimedia Tools and Applications, 32(2): 139-159. 
Gregersen, J.B., Gijsbers, P.J.A. and Westen, S.J.P., 2007. OpenMI: Open modelling interface. Journal of 

Hydroinformatics, 9(3): 175-191. 
Liquori, L. and Spiwack, A., 2008. Extending FeatherTrait Java with Interfaces. Theoretical Computer 

Science, 398(1-3): 243-260. 
Maxwell, T., 1999. A paris-model approach to modular simulation. Environmental Modelling & Software, 

14(6): 511-517. 
Olaya, V. and Gimenez, J.C., 2007. SEXTANTE: a gvSIG-based platform for geographical analysis, Free 

and Open Source Software for Geospatial, Victoria, Canada. 
Xie, Y. and Brown, D.G., 2007. Simulation in spatial analysis and modeling. Computers, Environment and 

Urban Systems, 31(3): 229-231. 
 
 

922




