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Abstract: Recent years have seen considerable interest in sensor networks.  In this paper we study 
networks of chemical or similar sensors detecting a plume of contaminant, such as that in Figure (i), although 
our analysis also applies to sensors of other kinds. 

In order to optimise power consumption, we assume 
that sensors are normally quiescent, but can “wake” 
each other if contaminant is detected.  Consequently, 
a wave of activation spreads through the sensor 
network, much like the spread of infection through a 
population.  In addition, exchanging information 
with other nodes allows the network to compensate 
for sensor detection errors. 

We describe a Java-based simulation of such a 
network, which we use to study the performance of 
different sensor network topologies.  In the model, 
the contaminant plume is simulated with a 
probability density function of chemical 
concentration, compatible with the Richardson-
Obukhov theory of turbulent mixing.  Sensor nodes 
are simulated with a simple agent-based model 
incorporating message-passing. 

Of the six networks examined, the best-performing 
networks were a square grid and a network with 
short-range random links.  These two networks most 
effectively compensated for sensor errors, while 
minimising the overall power consumption, as a 
result of not “waking up” unnecessary nodes.  In 
general, random links in a sensor network appear to 
be effective, as long as the distance between linked 
nodes is small compared to the size of the 
contaminant plume. 

The wave of activation which spreads through the 
network differs from traditional models of the spread 
of infection through a population, in that initial 
growth in the number of recently activated sensors is 
approximately linear, followed by an exponential 
decay.  The linear phase corresponds to an expanding 
circle of activated nodes within the contaminant 
plume, while the decay phase occurs when the wave 
passes beyond the plume.  Further work will be 
conducted to model this process in more detail. 
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Figure (i). An example contaminant plume.  For 
many contaminants, such plumes are invisible 

(original photo by Mila Zinkova). 

 

Figure (ii). A node in the sensor network raises an 
alarm based on the node’s own sensor information 

together with information from other nodes. 
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1. INTRODUCTION 

Chemical sensor networks have many potential applications.  Airborne chemical contaminants such as 
volcanic emissions or industrial pollutants can cause human health problems, and may require government 
intervention.  Effective intervention requires knowing the extent of the affected area, the source of the 
contaminant, and the speed and direction of movement of the contaminant plume. 

Closely related issues occur with sensors for 
detecting airborne biological agents, for water-borne 
contaminants within the ocean, and even for the 
presence of animals or people over a geographical 
area. 

In general, sensors are detecting a concentration field 
Ct (x,y) at a given time t, where Ct  is a smooth 
function with a value below some threshold C* 

outside the contaminant area.  Using a larger number 
of sensors provides a better estimate of the region for 
which Ct(x,y) ≥ C*, as well as permitting 
extrapolation of the field Ct  forwards or backwards 
in time. 

It is possible to consider all sensors to be directly 
connected to a central processing station which 
“fuses” the sensor data and performs the required 
computations.  However, sensors are typically 
connected by radio links and, because of the inverse-
square law for radio propagation, power consumption 
is minimised when messages are passed in multiple 
short-range “hops,” rather than one large “jump” 
(Zhao and Guibas, 2004).  For example, sensors can 
be arranged in a rough n×n grid, as in Figure 1, and 
communicate only with their closest neighbours in 
the grid.  Data can be transferred to a specific point 
in the grid (such as the top-left node) from any other 
node in at most 2(n–1) “hops.” 

Sensor networks of this kind raise a number of issues 
regarding the most effective method for routing data 
through the network (Zhao and Guibas, 2004).  
However, our interest lies in distributed processing 
through the network.  Rather than routing data to a 
central processing station, we are interested in the 
case where a node in the network uses its own 
(typically unreliable) sensor, together with 
information from adjacent nodes, to produce an 
integrated response.  For example, a node could issue 
an audible alarm when its sensor data, together with 
data from nearby nodes, suggests a high probability 
that Ct (x,y) ≥ C* in the immediately surrounding area.  
The ability to do this relies on the smoothness of the 
function Ct , together with the fact that connected 
nodes are physically close to each other.  Figure 2 
shows a sensor network of this kind. 

In the present work, we concentrate attention 
particularly on establishing the region for which 
Ct (x,y) ≥ C*, and do not consider extrapolation of Ct  
forwards or backwards in time.  Our main focus is on 
how the topology of connections between nodes 
affects the ability of the sensor network to determine 
the region for which Ct(x,y) ≥ C*. 

Figure 1. A 10×10 sensor grid. 

Figure 2. Detail of sensor network structure.  Each 
node includes a sensor and an alarm. 

Figure 3. Volcanic plume from the Halema’uma’u 
vent in Hawaii, showing local turbulence (photo by 

Mila Zinkova, under Creative Commons: 
commons.wikimedia.org/wiki/File:Sulfur_dioxide_emissions_from_the_Halemaumau_vent_04-08-1_1.jpg).

953



Dekker and Skvortsov, Topological Issues in Sensor Networks  

2. A SENSOR MODEL 

We concentrate on contaminants where the field Ct(x,y) is approximately Gaussian around a central point.  
However, for the simulations presented here, we approximate the Gaussian by a cosine curve for the region    
–π…π, and a constant zero outside that range.  This therefore puts a definite limit on the extent of the 
contaminant plume.  Within the boundaries of the plume, local turbulence (such as that shown in Figure 3) 
may result in fluctuations around Ct .  This results in a probability density function for the local concentration, 
given by equation (1): 
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In equation (1), γ = 26/3 would be compatible with the Richardson-Obukhov theory of turbulent mixing, and 
the intermittency factor ω ranges from close to 1 near the centre of the plume down to about 0.6 near the 
edge (Gunatilaka et al., 2008). 

We can simulate the effect of local turbulence by choosing uniformly distributed numbers u in the range 
0…1, and taking the local concentration to be zero for u < 1– ω, and otherwise: 
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Areas within the contaminant plume may have very low local concentrations.  However, these areas are still 
subject to threat, since the turbulent processes giving low local concentrations may also result in very rapid 
concentration changes within the general area of the plume.  At the same time turbulent mixing may produce 
very sharp spikes of concentration near the edge of the plume. 

We assume a sensor threshold C*, so that sensors report the presence of contaminant whenever the local 
concentration is greater than or equal to C*.  Outside the plume, where the local concentration will always be 
below this threshold, we assume a false-positive failure rate of 10%.  That is, activated sensors outside the 
plume falsely report the presence of contaminant 10% of the time. 

We also assume that sensors require power to operate.  They may include a fan for sampling air, for example.  
Sensors are therefore normally inactive.  From time to time, sensor nodes “wake up” and sample their local 
environment.  They are also “woken up” by their neighbours if a potential contaminant threat is detected. 

The “waking up” process begins with a sensor which becomes active (for example, through a timer) within a 
contaminant plume, and registers a positive result.  This node then broadcasts its sensor observations through 
the network to adjacent nodes, which fire up their own sensors and in turn broadcast their own observations 
(positive or negative).  A wave of observations therefore sweeps through the network, resembling the spread 
of an infection through a population (Giesecke, 2002).  We assume that this wave propagates rapidly 
compared to the evolution of the plume, so that the plume can be treated as effectively static. 

The wave of activation stops when a node in the network receives a negative observation from a neighbour, 
and confirms the negative observation with its own sensor.  In this case, the node deems the probability of 
contaminant to be so low that it does not wake any of its other neighbours. 

After being woken, nodes integrate their own sensor observations with one or more observations from 
neighbouring nodes.  A positive alarm is raised if two conditions are both met: 

• there are no negative observations, or there are at least two positive observations; and 

• at least 40% of the observations are positive. 

3. SENSOR NETWORK PERFORMANCE CRITERIA 

There are four criteria which we look at for assessing the performance of different sensor network topologies. 

First, we consider the total number of nodes “woken up.”  This provides a measure of power consumption, 
since each of those nodes will incur the cost associated with operating its own sensor. 

Second, we consider the total number of messages sent across the network.  This provides a measure of 
power consumption due to communication. 
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Third, we consider the average time taken (in steps) before the wave of activation dies out.  Each step 
involves a node firing up its sensor, waiting to obtain an observation, and notifying its neighbours in the 
network.  As noted above, this process ends when the only notifications are negative ones, confirmed by the 
destination’s own sensor. 

Finally, and most importantly, we consider the 
accuracy with which the overall sensor network 
recognizes the boundaries of the detectable 
contaminant plume, i.e. the region for which       
Ct (x,y) ≥ C*.  We do this by considering the sum of 
false-positive errors (where Ct (x,y) < C*, but with 
probability 10% a positive reading has been 
recorded) and false-negative errors (where a node is 
within the plume, i.e. Ct (x,y) ≥ C*, but the local 
concentration is below the threshold due to 
turbulence).  Communication within the network 
should reduce the chance of both kinds of error, 
either by neighbours failing to confirm a false 
positive, or by neighbours within the plume 
correcting a false negative.  For a given network, we 
measure the errors as a percentage change compared 
to the baseline where all nodes are “woken up” but 
come to a decision based only on their own internal 
sensor.  Thus –100% would mean that network 
communication eliminates all errors, while +100% 
would mean that network communication doubles 
the number of errors. 

4. SIMULATION EXPERIMENTS 

We have conducted a number of experiments 
involving a plume of contaminant as discussed 
above.  We used a simple agent-based model, written 
in Java, and incorporating message-passing between 
sensor nodes.  Figure 4 shows a typical run, with the 
contaminant plume in yellow, orange, and red.  The 
background colour in this diagram indicates the value 
of Ct (x,y), with yellow being the threshold value C*, 
and green indicating values below this threshold.  
There are 100 sensor nodes, initially connected in a 
square grid network. 

Experiments used the six network topologies shown 
in Figure 5.  These included the square grid network 
NG; four networks of the form Nd, with links 
connected at random between pairs of nodes at most 
a distance d apart; and a denser grid network NX.  
Table 1 gives the average degree and average path 
length between nodes for these nets. 

For each network, we conducted 1000 simulation 
runs, and recorded the performance criteria from Section 3.  Table 2 summarises the average results. 

In terms of compensating for sensor errors, the best-performing networks were the square grid NG and the 
network N50 with short-range random links.  For these networks, over 40% of errors were corrected (on 
average) by sharing information with neighbours.  Uncorrected errors were generally false positives just 
outside the plume area, or clusters of false negatives within the plume. 

 

 

Figure 4. Experimental scenario.  Background 
colour indicates the value of Ct (x,y), with yellow 

being the threshold value C*, orange and red above 
the threshold, and green below the threshold.  
Node colours are as per the legend, with grey 
indicating nodes that are never “woken up.” 

Table 1. Network characteristics (distances in Nd 
relate to a height of 400 for the area in Figure 4). 

Net Average 
degree 

Average 
path length 

NG 3.6 6.67 

N50 3.6 6.03 

N100 3.6 4.53 

N200 3.6 3.75 

N300 3.6 3.73 

NX 6.84 4.68 
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NG N50 N100 

 
N200 N300 NX 

Figure 5. Network topologies used in experiment. 

The two networks NG and N50 also had the best 
power consumption, with (on average) about 54% of 
nodes awakened and (on average) 137 messages sent 
in total. 

On the other hand, these two networks were also the 
slowest in obtaining a result.  That is, the wave of 
activation took longest to die out on these networks.  
However, these results show that good performance 
can be achieved with random short-range links 
between nodes. 

For the networks of the form Nd (with links 
connected at random between pairs of nodes at most 
a distance d apart), the number of errors increased 
with d.  Indeed, for N200 and N300, networking 
actually increased the number of errors above the 
baseline, because nodes were “nearby” in the 
network to physically distant nodes.  Integrating sensor data from these physically distant nodes produced 
incorrect results. 

The number of nodes awakened (and hence the total power consumption) also increased with d for the 
networks Nd.  The time to obtain a result on these networks initially decreased with d (as a result of the 
decreasing average path length), and later increased (as a result of the increasing number of nodes 
awakened). 

Performance of the denser grid network NX was worse than expected.  This shows that as long as a node has 
enough neighbours to provide reasonable error-correction, increasing the number of links does not 
necessarily improve performance.  The practical application of this is that the radio transmission power of 
nodes can be limited to a value that ensures a sufficient average number of neighbours.  More detailed 
simulation would be required to determine this threshold. 

5. CHARACTERISTICS OF THE ACTIVATION WAVE 

Figure 6 shows the average number of currently active and broadcasting (that is, just recently awakened) 
nodes over time for the six network topologies.  Initial growth cannot be distinguished from linear growth for 
the first few steps (as the wave of activation moves through the plume), and is significantly faster for NX, 
which has a higher average degree.  The peak reached is lowest for NG and N50, and higher for the other four 

Table 2. Simulation results, averaged over 1000 
simulation runs for each network. 

Net Errors Nodes 
awakened 

Msgs 
sent 

Total 
steps 

NG –45.7% 55.2 139 9.11 

N50 –40.3% 53.1 135 8.55 

N100 –10.7% 66.2 168 7.48 

N200 58.1% 76.9 183 7.81 

N300 79.6% 78.2 177 8.35 

NX –18.0% 76.1 336 7.82 
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networks.  Activation decays exponentially for each case (as the wave of activation moves outside the 
plume). 

Figure 6 suggests an analogy with the SIR equations 
(Giesecke, 2002) for modelling a disease epidemic, 
similar to that in De and Das (2008).  Table 3 
summarises this analogy. 

The SIR equations are as follows: 

 SI
dt

dS α−=  (2) 

 ISI
dt

dI βα −=  (3) 

 I
dt

dR β=  (4) 

However, these equations result in an initially 
exponential growth of I, while Figure 6 shows 
approximately linear initial growth, as would be 
expected for an expanding circle of active nodes 
within the plume area.  In fact, the data in Figure 6 
fits the equation: 

 I
dt

dI
t ηζ −=  (5) 

where the exponential decay factor η is 
approximately 0.4, and ζt is positive for the first few 
steps (as the “wave of activation” expands through 
the plume) and zero afterwards.  There is a 
discontinuous change in ζt from its initial positive 
value down to zero as the wave reaches the plume 
boundary.  The initial value of ζt is related to the 
average network degree, ranging from 3.2 (for the 
networks NG and N50) to 4.2 for N200 and 7.2 for NX. 

The curves in Figure 6 could also be modelled (a 
little less accurately) as differentials of sigmoid functions, and this might be the best fit for less perfectly 
circular plumes, where different parts of the activation wave reach the plume boundary over a wider time 
range. 

An even more sophisticated model would include spatial dynamics of the sensor nodes, and therefore would 
include space derivatives (traditional diffusive terms) in the left-hand sides of equations (2) to (4). Analysis 
of such a model is outside the scope of this paper, and will be published elsewhere. However, it is worth 
noting here that, under the simplifying assumptions of homogeneity and isotropy, such a system can be 
reduced to the well-known Fisher-Kolmogorov equation, which also allows a quite general solution in the 
form of an activation wave with an exponential tail. 

We plan to conduct further modelling along these lines, which will provide predictions of the configuration 
parameters required for the network to come to a correct decision for various sensor networks. This would 
include optimisation of average degree and average path length, and prediction of the time required for the 
network to come to a decision (i.e. for the wave of activation to die out). 

6. DISCUSSION 

We have presented an agent-based simulation of a sensor network in which, to optimise power consumption, 
sensors are normally quiescent, but can “wake” each other if contaminant is detected.  A wave of activation 
therefore spreads through such a network, much like the spread of infection through a population.  In 
addition, exchanging information with other nodes allows the network to compensate for sensor detection 
errors. 

Figure 6. Average number of recently “waked” 
nodes over time for six network topologies. 

Table 3. Sensor-network interpretation of the SIR 
epidemiological model. 

 Epidemiological 
interpretation 

Sensor-network 
interpretation 

S Susceptible people Inactive nodes 

I Infected people (for 
a few days) 

Recently “waked” 
nodes (for 1 

timestep) 

R Recovered people Activated nodes (and 
finished 

broadcasting sensor 
data to neighbours) 
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We have used this model to examine the performance of six different network topologies for connecting the 
sensor nodes. 

The best-performing networks were the square grid NG and the network N50 with short-range random links.  
These two networks most effectively compensated for sensor errors, while minimising the overall power 
consumption, as a result of not “waking up” unnecessary nodes.  In general, random links in a sensor network 
appear to be effective, as long as the distance between linked nodes is small compared to the size of the 
contaminant plume.  These are, of course, the kind of links that would result from making random 
connections within a limited radio range. 

The wave of activation which spreads through the network differs from traditional models of the spread of 
infection through a population, in that initial growth in the number of recently activated sensors is 
approximately linear, followed by an exponential decay.  We intend to conduct further modelling of the 
dynamics of this wave, in order to better predict the time required for the network to come to a decision. 
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