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Abstract:  The process of image formation in an 
optical microscope or similar imaging device 
results in a distortion of the true object image due 
to diffraction effects and out-of-focus blurring. 
This distortion can greatly limit the resolution of 
the imaging device, particularly in the case of 3D 
microscopy where the axial resolution is impeded 
by the contribution of out-of-focus signal from an 
extended area of the object outside a recorded focal 
plane. 

Fortunately the image formation process can be 
modelled as a convolution of the original object 
with the impulse response of the device, that is, the 
image of a point energy source. As such, an 
approximation of the original object image can be 
derived through an inversion of this model – a 
deconvolution. Unfortunately the inclusion of 
random noise in the image recording process 
makes direct methods of inverting this model less 
than ideal as they are prone to amplification of 
noise. A class of popular approaches is to use iterative methods which try to account for the noise and 
progress towards an acceptable approximation of the real image. These methods are often computationally 
intensive, requiring a reapplication of the image formation model to successive estimates of the real image. In 
addition, biological and medical research organisations are collecting 3D image data on an increasingly large 
scale, and there is a demand to process this data in a timely manner. 

In this paper we investigate the use of graphics processing units (GPUs) to accelerate the execution of one 
such iterative algorithm, the Richardson-Lucy (RL) algorithm. Modern GPUs are highly parallel commodity 
processors containing hundreds of cores and capable of executing thousands of threads concurrently. GPUs 
can be utilised to accelerate a wide variety of compute intensive algorithms. As their programmability has 
improved over the past decade, significant effort has been invested in performing general purpose computing 
on GPUs (GPGPU). Until recently GPGPU algorithms had to be implemented using a combination of 
graphics application programming interfaces (APIs, e.g. OpenGL, DirectX) and shader languages, which 
impose a graphics focused conceptual view of the underlying hardware and hide a number of important 
hardware capabilities from the programmer. The advent of GPGPU programming languages such as CUDA, 
Brook, and OpenCL have made a number of these capabilities more accessible, paving the way for more 
efficient algorithms, and have seen the use GPGPU approaches in new application areas. 

We compare performance results for a number of 3D Richardson-Lucy implementations on both the CPU 
and GPU, showing that our best GPU implementation, using Fourier space convolutions, significantly 
outperforms our best CPU implementation, which uses a publicly available and highly optimised Fast Fourier 
Transform (FFT) library. 

Keywords: graphics processing units (GPU), parallel processing, image restoration, deconvolution, 
microscopy, Fast Fourier Transform 

Richardson-Lucy(O, PSFF, N) return E { 
E = O 
for N iterations 
 /* apply imaging model to estimate */ 
 EF = gpu_fft(E) 
 BF = gpu_multiply(EF, PSFF) 
 B = gpu_ifft(BF) 
 
 /* captured image divided by blurred estimate */  
 R = gpu_divide(O, B) 
 
 /* calculate correction vector */ 
 RF = gpu_fft(R) 
 CF = gpu_multiply(RF, PSF*F) 
 C = gpu_ifft(CF) 
 
 /* apply correction vector */ 
 E = gpu_multiply(E, C) 
end 
} 

Figure 1: Frequency based GPU Richardson-Lucy algorithm. 
Variables O, E, B, R, C and PSF = original image, current 

estimate, blurred estimate, ratio, correction and psf respectively
(stored in GPU memory). * denotes complex conjugate. 
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1. INTRODUCTION 

Blurring effects inherent to the process of image formation limit both the contrast and resolution of a 
microscope, restricting the accuracy and scale at which we can quantify and examine microscopic structures. 
In 3D light microscopy the blurring is predominately caused by diffraction and the contribution of out-of-
focus light from regions of the object out of the focal plane. Optical aberrations, intensified by using the 
microscope outside of its design conditions (Gibson & Lanni, 1991), further degrade image quality. 

The blurring caused during image formation can be characterised by the impulse response of the imaging 
device. The impulse response is the image of a point source object captured by the imaging device and is 
often referred to as the point spread function (PSF). With this information a linear model of the imaging 
system can be defined as a convolution of the true object f(x) with the PSF p(x,ξ) as follows. 

ξξξ dxpfxg ),()()( =  (1) 

When p(x,ξ)=pi(x-ξ) the PSF is assumed to be spatially invariant (SI). In other words, the image of a point 
source object is identical regardless of where it is positioned in the sample. This is often not the case, 
particularly for 3D light microscopy (Gibson & Lanni, 1991), and the PSF may change based on axial and 
lateral location. In these cases a spatially variant (SV) description of the PSF provides a more accurate model 
of the imaging system, and p becomes a function of spatial location p(x,ξ)=pv(ξ,x-ξ) giving the intensity of 
light at image point x produced by a point light source at point ξ in object space (Preza & Conchello, 2003). 
Given these models of image formation the process of finding the unknown true object f(x) from the observed 
or captured image g(x) becomes one of inverting equation 1, that is, deconvolving the captured image using a 
suitable expression of the PSF.  

It is well known from the Convolution Theorem for Fourier transforms that a convolution in the spatial 
domain is equivalent to an element-wise multiplication in the Fourier domain. Hence, for the spatially 
invariant model, equation 1 becomes 

)()()( ωωω PFG = ,  (2) 

where capital letters denote the Fourier transform of  the associated lower case functions. The desired 
deconvolution can then be performed using a straight-forward division in the Fourier domain. 

)()()( ωωω PGF = .  (3) 

The true image is obtained by performing an inverse Fourier transform on the result. Handling the SV model 
is not as straight-forward, and will be discussed later. 

When dealing with discrete images the integral operators above are replaced by the appropriate summation 
operators, and the Fourier transforms can be performed using the Discrete Fourier Transform (DFT) with the 
PSF padded to the size of the real image. Fast algorithms known collectively as Fast Fourier Transforms are 
available for computing the DFT, and provide an efficient means of performing both convolution and 
deconvolution using a computer. Such an approach to inverting the imaging model rarely performs well on 
real images though. The process of capturing an image using a digital camera introduces random noise n due 
to statically fluctuations in the measurement device. In practice the imaging model therefore becomes 

 += )(),()()( xndxpfxg ξξξ . (4) 

Because the noise is random and both the noise and true image are unknown, there is no certain method of 
separating the noise contribution in the final image from the contribution of the true image. Applying a 
deconvolution as described above in this situation results in an amplification of the noise (Lucy, 1994) which 
can render the output “deprived of any physical meaning” (Bertero & Boccacci, 2002). 

A common approach for addressing the inversion of equation 4 is to use iterative algorithms that account for 
the statistical properties of noise, or regularise its effects in some way, while converging towards an optimal 
solution. A popular algorithm for achieving this is the Richardson-Lucy algorithm (Richardson, 1972; Lucy, 
1974) which provides the Maximum Likelihood estimator for f(x) when the noise is modeled using Poisson 
statistics. 

The algorithm is derived from an expression of the inversion problem using Bayes’ Theorem as described in 
(Richardson, 1972) and (Lucy, 1974), and is defined in the discrete case by 
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It starts with f0 as an estimate of f and proceeds to re-evaluate the estimate as shown for a given number of 
iterations or until some stopping criterion is reached. Notice that the algorithm does not actually invert the 
imaging model directly, instead, it: a) applies the imaging model to the estimate fr producing a blurred 
estimate gr, b) creates a correction factor by convolving the ratio of the observed image g to blurred estimate 
gr by the “transpose” of the PSF (note the domain of summation), d) multiplies the current estimate fr by the 
correction to get a new estimate. 

Unfortunately this algorithm can become computationally intensive when a large number of iterations are 
required. From equations 5 and 6 we can see that each iteration of the algorithm requires the calculation of 
two convolutions plus a complete element-wise division and multiplication of the image. In this paper we 
investigate the use of graphics processing units (GPUs) to accelerate the Richardson-Lucy algorithm.  

2. BACKGROUND AND RELATED WORK 

2.1. Graphics Processing Unit 

We will focus on CUDA and NVIDIA GPUs in our discussions (NVIDIA, 2008). A GPU consists of a 
number of multiprocessors (MPs) each with a set of 32 bit registers, private on-chip parallel shared memory, 
and managed read-only constant and texture memory caches. Each multiprocessor contains eight scalar 
processor cores (SPs) that share the register and memory resources of their MP, and execute the same 
instruction simultaneously at each instruction cycle. The MP schedules, switches, and executes threads in 
fixed groups of 32 threads called a warp. The same instruction is executed for all threads of the warp before 
proceeding to the next instruction or executing a different warp. Threads have general read-write access to 
device global memory attached to the graphics board, but this is not cached and incurs significant overhead 
compared with accessing the on-chip shared memory. Threads are indexed over a problem domain using a 
hierarchy of grids and blocks. A block is an N-Dimensional (N=1..3) array of threads and a grid is a KD 
(K=1,2) array of blocks. A block is assigned to a single MP for its lifetime and its threads can synchronise 
their execution and share data via MP shared memory. The number of blocks that can run on an MP at one 
time is limited by the register and shared memory resources required per block. 

Significant performance benefits exist when a half-warp (first or second 16 threads of warp) accesses both 
global and shared memory in a particular pattern. When the 16 threads access consecutive elements of global 
memory and the first thread’s access is aligned to particular segments of memory, the accesses are coalesced 
into a single memory transfer instead of 16 serialised transfers. Coalesced accesses on newer GPU hardware 
are slightly more relaxed, however, optimal results are still achieved using the rules above. Shared memory 
allows parallel accesses by threads of a half-warp that access different shared memory banks. Memory is 
partitioned across 16 banks in 32bit words such that the ath word in memory is assigned to bank b=a mod 16. 
Accesses are serialised on the order of the minimal overlapping set of bank accesses (NVIDIA, 2008).  

2.2. Convolutions and Discrete Fourier Transforms on the GPU 

Spatial convolution is a fairly straight-forward task to perform on graphics hardware. Some graphics 
hardware provides operations for 2D convolution by small filters and Hopf and Ertl (1999) have shown how 
to apply these to the construction of 3D convolutions. A number of convolution approaches have been 
implemented using graphics APIs and shaders (Bjorke, 2004; James & O’Rorke, 2004; Viola, 2002; 
Hadwiger et al., 2001). A common approach is based on shifting and accumulating an image into a buffer 
using a single kernel weighting for each image, while others directly gather image and kernel values within a 
pixel shader program using texture accesses and produce the pixel output value by a standard multiply-
summation of the values. Since the advent of CUDA, efficient algorithms for 2D convolution have been 
described (Podlozhnyuk, 2007), however, they gain much of their performance by using separable filters. We 
make no assumptions on separability and hence use a conventional gather-multiply-sum approach on a per 
pixel basis within the CUDA kernel. 

FFTs have been implemented on the GPU using graphics APIs and shaders (Moreland and Angel et al., 2003; 
Govindaraju et al., 2006; Spitzer, 2003), however, most results were only comparable with the performance 
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of optimised CPU FFT libraries such as FFTW and MKL. With the release of CUDA came NVidia’s CUFFT 
1.1 library which significantly outperformed previous GPU based FFT implementations as well as optimised 
CPU libraries. Since then marked improvements have been made in the performance of FFT algorithms on 
the GPU (Govindaraju et al., 2008; Volkov and Kazian, 2008; Nukada et al. 2008). In this work we utilise 
GPU FFT algorithms as “black-box” libraries and will not concern ourselves with their internal details. 

2.3. Parallel Richardson-Lucy 

A common approach to implementing the Richardson-Lucy algorithm in parallel on a cluster of PCs (Boden 
et al., 1996; Shearer et al., 2001) is based on the sectioned method of Trussell and Hunt (1978a). In such an 
approach the image can be segmented into a number of abutting sub-tiles and the RL algorithm is performed 
on each tile individually. A guard-band of half the PSF diameter is included around each tile to accommodate 
for the additional information required during convolution at tile boundaries. On completion the guard-bands 
are discarded and the tiles are combined to form the final deconvolved image. 

Since the processing of each tile is performed in isolation, the tiles can easily be distributed to multiple PCs 
or processors and processed in parallel. The sectioned method also provides a convenient way of 
incorporating a SV model in a piece-wise manner (Trussell and Hunt, 1978b). By processing each tile using a 
spatially invariant model, but using a different PSF for each tile base its spatial location, spatially variability 
is achieved at the tile level. Tile size can be adjusted to accommodate greater or less extents of variability, 
thus minimising deconvolution artefacts between adjacent tiles. We present one such approach for the GPU. 

An alternate or complementary approach is to parallelise the FFT algorithm used to facilitate frequency 
domain convolutions. Extensive effort has been applied to implementing GPU accelerated FFTs as discussed 
above. This type of acceleration could be used for both sectioned methods (FFT on individual tiles) and non-
sectioned methods (FFT on whole image). Fung & Mann (2008) provide brief results for a non-sectioned 
GPU accelerated RL algorithm using CUFFT and custom kernels. They show a 9.8-21x speedup over the RL 
implementation in Matlab for a single test case, but do not provide discussions of the algorithm. We discuss 
such an implementation in more detail. 

3. IMPLEMENTATION ON THE GPU 

We examine two implementations of the Richardson-Lucy algorithm on the GPU, one that incorporates 
frequency domain convolutions and one that uses spatial domain convolutions. 

3.1. FFT based approach 

For the frequency domain approach we use a publically available FFT library for the GPU to perform the 
Fourier Transforms and implement other parts of the algorithm using customised GPU kernels. The main 
iterative control loop of the algorithm is implemented on the CPU and the loop body consists entirely of calls 
to the FFT library and our GPU kernels (figure 1). A major limiting factor in GPU computing is the transfer 
of data from CPU host memory to GPU device memory via the PCI Express bus. Implementing all algorithm 
operations on the GPU rather than having to read values back and forth to the CPU between each convolution 
not only provides increased parallelism over the CPU for performing these operations, but allows us to keep 
host-to-device transfers at a minimum. 

The two convolutions required in the RL iteration are performed using a combination of FFT library calls and 
a customised kernel for the element-wise multiplication. While the input image data is stored as real valued 
numbers, the FFT will perform a real-to-complex transform, which results in complex output. The kernel for 
element-wise multiplication must therefore perform complex multiplication. Since the image array and the 
padded PSF array are of the same size, and share the same storage pattern in memory (e.g. row-major), the 
operation can be performed on the data as a 1D vector, regardless of the image dimensions. Such an ordering 
of values facilitates a simpler construction of the thread block/grid, and more efficient memory access 
patterns (§2.1). The other major operations, i.e. the original image to blurred estimate ratio and the 
application of correction vector to the estimate, are performed element-wise on real values using custom 
written division and multiplication kernels respectively. 

Almost all input and output variables of the FFT and custom kernel functions are of the order of the original 
image size, and must be stored in GPU device memory upon function invocation. Modern high-end GPUs 
have between 756MB and 4GB of device memory, while a typical 1024x1024x16 real valued image 
consumes 64MB (1MB = 1024 kB). Storing multiple variables of this size can be costly in memory usage. To 
conserve space, operations will be performed in-place where appropriate, so that the same piece of memory 
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can be used to store both the input and output. The most suitable variables for in-place calculation or memory 
reuse are those whose values will not be required after they have been used as input to an operation. The RL 
algorithm requires up to four variables to remain persistent within and between algorithm iterations: the 
original image (O in figure 1), the current estimate (E), and the Fourier transforms of the PSF and its 
complex conjugate (PSFF and PSF*F). All other variables are candidates for reuse. Examining figure 1 we see 
that none of these remaining variables are used more than once after they are calculated, nor are any of them 
used simultaneously as input to a GPU function. Given that both FFTs and element-wise operations can be 
performed in place, we require only one segment of memory to represent all of these variables. In practice we 
use two memory segments, a and b, to avoid unnecessary padding as discussed bellow. Variables share these 
segments as such: EF -> BF -> B -> R -> RF -> CF -> &b, and C -> &a. 

Although a DFT performed on N=N1xN2x…xNd real value samples (Nk = size of kth dimension) produces N 
complex values, almost half of these samples occur redundantly as the conjugate of other samples. A 
common practice is to discard the redundant coefficients and store only N1xN2x…x(Nd/2+1) complex values. 
Since complex values require twice the space of real values, the memory required to store the complex FFT 
output will be slightly larger than that required to store the real valued image. When performing in-place FFT 
calculations one must allow for this extra space by padding the real valued image along the last dimension 
within the larger array. The length of an array dimension including padding is known as pitch. For the FFT 
library we utilise, the padding occurs at the end of rows. In a row-major storage scheme this raises difficulties 
when performing element-wise operations between real valued images stored in a standard manner and ones 
of the same “size” stored using padding. This is because associated image samples are not at the same 
memory offsets from their array base addresses. To handle this situation one can either pad all real valued 
images so they share a common storage arrangement, or create GPU kernels that handle pitched access. We 
have implemented kernels that account for pitch to avoid unnecessary padding, however, we may experiment 
with padding in the future as it could provide more efficient access patterns in the kernel (§2.1). 

3.2. Spatial domain approach 

For the spatial domain convolution approach we use a single kernel that implements the entire RL algorithm 
on the GPU before returning. The implementation is based on the conventional sectioned method for 
parallelisation of the RL algorithm, where we map the computations for a given tile to a single 
multiprocessor of the GPU. All threads processing a tile can then take advantage of on-chip shared memory 
and synchronisation barriers to cooperatively process the tile without writing back to global device memory. 

As discussed in section 2.3, the RL algorithm can be performed by breaking the image into small tiles (with 
guard-bands) and running the algorithm individually on each. Parallelism can be achieved easily by 
processing multiple tiles simultaneously. This approach works particularly well on distributed memory 
clusters, as a single tile can be assigned to each processor and no communication is required between the 
processors (tiles). The properties that make this approach attractive for a distributed memory cluster also 
make it attractive for GPU implementation. As previously discussed (§2.1), threads that run on a single GPU 
MP can synchronise their execution and communicate values to one another via this shared memory. The 
shared memory of one multiprocessor can not be accessed by other multiprocessors, nor are there any 
convenient mechanisms to synchronise threads on different multiprocessors. Communication and 
synchronisation between multiprocessors is therefore inconvenient and costly, requiring data writes to global 
device memory and termination of a kernel to achieve global synchronisation. In addition, the shared 
memory assigned to a thread is unlikely to remain persistent across a kernel invocation. Like a single 
processor of a cluster, a single GPU multiprocessor can therefore process a tile quickly and efficiently using 
its own local resources, while communication with other processors is far more costly. 

Each tile of the image will therefore be allocated to a single thread block that will run on a multiprocessor. 
The block of threads will be indexed over the tile’s local spatial domain as a 2D or 3D box, and each thread 
will handle the processing of the associated tile pixel. The two ND convolutions in the kernel will be 
performed using standard N-level nested for loops with a multiply-add in the inner loop. All other 
calculations can be performed using a few arithmetic operations. 

During the convolutions to obtain the blurred estimate and correction vector the threads will require values of 
the current estimate and ratio that were calculated by other threads in the block. As such, a barrier 
synchronisation should be called prior to each convolution to avoid read-before-write access problems. These 
commonly read and written values, along with the original image, will be stored in shared memory to 
facilitate efficient access. Reading and writing these values to global memory over a large number of RL 
iterations would otherwise incur a significant performance penalty. The commonly accessed PSF data 
remains constant throughout the algorithm and can be placed in read-only constant memory. Constant 
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memory constitutes part of device global memory, however, constant memory accesses are automatically 
cached on the multiprocessor in a 16KB cache. When all threads of a warp access the same cached element 
of constant memory it is as fast as accessing a register (NVIDIA, 2008). This will be the case for PSF 
accesses within the convolutions as they are dictated directly by the parameters of the for loop, and the loops 
will be performed in lock step by the threads of a warp. Values calculated for other array variables, such as 
the blurred estimate and correction vector, remain local to each thread and can be stored in thread registers. 
This represents the data arrays implicitly across registers and provides a performance advantage compared to 
memory access. It also avoids the need to consider in-place operations and variable reuse as the CUDA 
compiler will reuse register resources appropriately. 

Performance is not the only issue dictating our selection of variable storage above. Recall that the RL 
algorithm requires a number of image-sized variables to be maintained at any one time. The shared memory 
resident on a multiprocessor is 16kB shared between all blocks currently occupying the multiprocessor. For 
each tile “image” in the sectioned method we require both the tile itself and a guard band half the width of 
the PSF around the entire tile. Taking a 16x16 pixel tile and a 17x17 PSF results in approximately 4kB for 
real valued data, meaning we can store a maximum of 3 or 4 tiles in shared memory. In our implementation 
the shared memory requirement can be restricted to one tile image per block using the storage options above, 
because the same space can be used to store the blurred estimate and ratio without conflict. When considering 
3D images, however, the shared memory resource soon become inadequate. For an 8x8x8 tile and 9x9x9 PSF 
we hit the 16kB barrier for a tile and the kernel invocation begins to fail. Point spread functions more than 
twice this size are not uncommon in 3D widefield microscopy. Even with smaller 3D tiles or PSFs it is 
unlikely that more than one block can share the multiprocessor at one time. This reduces the thread 
scheduler’s ability to hide stalls and latencies by swapping in threads of another block. When PSFs reach a 
size that will exceed the shared memory resources using our implementation (31x31x1), we utilise kernels 
that use global memory only.  

A maximum of 512 threads can be assigned to a block and it is generally recommended that each block 
contain somewhere between 128-256 threads (NVIDIA, 2008). We use a 16x16x1 block of threads for both 
2D and 3D problems. To handle the much larger tile image each thread will perform the calculations for 
multiple pixels, by shifting the block of threads over the tile image domain. The threads will be shifted by the 
dimensions of the block, and for each location neighbouring threads will handle neighbouring pixels. This is 
more efficient than neighbouring threads making strided memory accesses and shifting the block by one pixel 
at a time due to the memory access versus performance benefits discussed earlier (§2.1).  

4. RESULTS AND DISCUSSIONS 

The algorithms described above were implemented in 
CUDA on an NVidia GTX 260 graphics card with 240 
stream processors and 896MB of global memory 
(RAM). The host computer had a 2.49GHz Xeon 
Quad-Core processor running 32bit Windows XP, 
CUDA environment 2.1, CUFFT 2.1 for the GPU 
FFTs, and FFTW 3.1 (Frigo & Johnson, 2005) for the 
CPU FFTs. We compared our GPU algorithms against 
non-sectioned frequency and spatial domain 
implementations on the host. The CPU algorithms 
were single threaded except where FFTW used multi-
threading. The code for the CPU algorithms where 
almost identical to their equivalent GPU algorithms, 
e.g. they were created by taking the GPU code and 
changing it slightly to run on the CPU and with 
FFTW. GPU versions include additional code to copy 
values from the host to the GPU, move values from 
device global memory to MP shared memory, and to 
iterate the 2D block of threads over the image tile 
instead of a single thread (CPU) in the spatial domain 
approach. 

Figure 2 shows the results for 2D and 3D images. 
Although the sectioned algorithm maps well to the 
GPU processor architecture, the computational 

Figure 2: Results for 2D (top) and 3D (bottom) Richardson-
Lucy on a 512x512(x16) floating point image using 20 

iterations 

3D Richardson-Lucy, 512x512x16 image, 20 iterations

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

3x3x3 15x15x15 27x27x16 39x39x16 51x51x16 63x63x16

PSF size

T
im

e 
(m

s
)

GPU FFT CPU FFT

2D Richardson-Lucy 512x512, 20 iterations

10

100

1000

10000

100000

1000000

3x3x1 15x15x1 27x27x1 39x39x1 51x51x1 63x63x1

PSF size

T
im

e
 (m

s
)

CPU FFT GPU FFT GPU SPATIAL CPU SPATIAL

1015



Domanski et al., Two and Three-Dimensional Image Deconvolution on Graphics Hardware 

complexity O(pxnxmxo) of a 2D spatial convolution is prohibitive (p=number of pixels, nxmxo=PSF size). 
We have excluded results for the 3D spatial domain approach due to its poor performance in 2D. Both the 
GPU and CPU non-sectioned frequency based approaches perform well, with the GPU version providing 
approximately 8.5x and 4.2x speedup for 2D and 3D images respectively. We have noted (§2.3) that an 
advantage of using sectioned methods is the straightforward integration of SV-PSF models. We also 
mentioned that frequency based deconvolution could be used in conjunction with a sectioned decomposition 
of the problem, and we will be experimenting with this in the future to take advantage of both methods. 

5. CONCLUSION 

We have presented and compared a number of parallel implementations of the Richardson-Lucy 
deconvolution algorithm on the GPU and CPU. We took two main approaches: one that applies frequency 
based convolution and utilises a CPU control loop with a combination of existing GPU FFT library calls and 
custom written kernels to parallelise individual algorithm operations, and one that applies spatial domain 
convolutions and performs the entire algorithm in a single GPU kernel. Results show that the non-sectioned 
FFT based algorithm is the fastest and outperforms a similar implementation using the accelerated CPU FFT 
library FFTW (4.2-8.5x speedup). The sectioned spatial domain approach is slower, but allows 
straightforward integration of spatially variant PSFs. Future work will involve implementing and testing a 
sectioned method that utilises frequency domain convolutions. 
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