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Abstract: In software tools for modeling and simulation of complex systems described through ODEs 
(e.g. those occurring in the scope of water quality research), hierarchical composition is often adopted as a 
mechanism to handle complexity. Currently, two competing techniques are used with regard to the generation 
of executable code from hierarchical models: component-based modeling and flattening.  

In component-based modeling, hierarchical models are constructed on the basis of self-contained binary 
components representing atomic sub-models. The manner in which these binary components are 
implemented is usually of no importance, as long as each component implements a specific well-defined 
inter-component interfacing protocol. A prime example of a tool that supports component-based modeling is 
MATLAB’s Simulink toolbox. 

The more recent flattening paradigm is typically adopted in the scope of high-level – often object-oriented – 
modeling languages such as Modelica and MSL. Non-executable, high-level model descriptions are 
processed by a model compiler in order to produce efficient, low-level, binary executable model code. 
During this process, the original composition and inheritance hierarchies are resolved in order to produce one 
large flat set of equations that offers potential for code optimization (i.e. automatic reduction of complexity). 
Examples of tools that adopt flattening are Dynasim’s Dymola, the OSMC’s OpenModelica and 
MOSTforWATER’s Tornado. 

Flattening is often advocated as an approach that is superior to component-based modeling and hence 
alleviates the need for the latter. However, in practice both approaches have their own distinct merits. 
Flattening allows for constructing highly efficient monolithic executable models, however the model 
compilation process tends to be prohibitively time-consuming for large models, and may even lead to 
depletion of memory in extreme cases. Component-based modeling on the other hand leads to less efficient 
executable models (due to inter-component communication overhead and the lack of potential for 
optimization), but tends to be more scalable for large coupled models. 

In this article, it is argued that a software tool for modeling and simulation of complex systems that aims to 
be versatile, needs to provide for both flattening and component-based modeling in a fully transparent 
manner. Depending on the goal of the modeling exercise, e.g. design versus optimization of a treatment plant, 
either flattening or component-based modeling will be more suitable. For instance, for the design of a new 
plant, component-based modeling will be advantageous as it causes little overhead when the engineer makes 
a sequence of modifications to the coupled model representing the plant. However the simulation of each of 
his designs will be relatively slow. In contrast, in the scope of optimization of an existing plant, one can 
afford to spend more time on the generation of an efficient executable model through flattening, since this 
will provide for faster execution of the multitude of simulation runs that is typically required for such 
exercises. 

The article presents the results of the extension of Tornado, an advanced framework for modeling and virtual 
experimentation originally focused on flattening, with support for component-based modeling. Thanks to this 
extension, Tornado now allows for transparent application of both modes of operation, on the basis of the 
same high-level object-oriented model descriptions, and the same virtual experiment descriptions. 

Keywords: Executable models, hierarchical modeling, flattening, component-based modeling, model 
compilers 
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1. INTRODUCTION 

In order to master the complexity of nowadays dynamic models, e.g. those occurring in the scope of water 
quality studies (i.e. bio-chemical processes in treatment plants, sewers and river catchments), hierarchical 
composition is often adopted. Through hierarchical composition, new coupled models can be constructed 
from sub-models that are either atomic, or coupled in their own right. Most software tools that support 
hierarchical composition allow for graphically constructing coupled models. However, for describing atomic 
models (that typically contain Ordinary Differential Equations (ODEs) and/or algebraic equations), 
procedural general purpose programming languages (e.g. FORTRAN, C or C++), procedural special purpose 
languages (e.g. MATLAB1), procedural modeling languages (e.g. ACSL (Mitchell et al., 1976)) or 
declarative modeling languages (e.g. MSL (Vanhooren et al., 2003) or Modelica2 (Fritzson, 2004)) are used. 

In order to be able to use coupled models for model evaluation purposes (e.g. time-based simulation), 
executable code has to be produced from the model description. Historically, the technique that has been used 
to this end can be labeled as component-based modeling (CBM), as it relies on run-time communication 
between self-contained binary units (components) that implement sub-models. The manner in which these 
binary components are implemented is usually of no importance, as long as each component implements a 
specific well-defined inter-component interfacing protocol. A well-known tool that has successfully 
implemented CBM is MATLAB’s Simulink toolbox. 

In recent years, another approach related to the generation of executable model code has gained popularity. 
As it relies on the construction of one optimized, comprehensive executable model (cf. Claeys et al., 2007 or 
Mattsson et al., 1998) in which the boundaries between sub-models are no longer clearly visible, it is 
commonly referred to as flattening. Flattening allows for generating executable models that are more 
efficient (both in terms of speed and in terms of size) than those that are typically generated through CBM. 
Unfortunately, flattening is not the ultimate solution to the problem of generating executable code from 
model descriptions. The automated analysis (named “model compilation”) that leads to the generation of 
code is convoluted, and is hence both time and memory intensive. Examples of tools that adopt flattening are 
Dynasim’s Dymola3 and the OSMC’s OpenModelica4. 

In fact, CBM and flattening can be regarded as complimentary techniques that both have their own distinct 
merits and drawbacks. In our opinion, a software tool that aims to provide support for different types of 
modeling exercises should therefore implement both. For instance, for a treatment plant design exercise it is 
important to be able to quickly analyze simulation results after modifying the coupled model (e.g. to study 
the effect of adding an additional activated sludge tank). Design exercises are therefore best served by CBM, 
as no complex processing is needed to come to an updated executable model based on a different 
arrangement of already existing components. On the other hand, an optimization exercise (e.g. to find the 
most efficient operational settings for a plant that satisfy given budgetary constraints) that requires the 
repeated execution of a multitude of simulation runs, will be best served by an executable model generated 
through flattening. In this case, the additional time that is to be spent on the generation of the flat model is 
easily over-compensated by the faster simulation times. 

Tornado (Claeys et al., 2006) is an advanced framework for modeling and virtual experimentation (i.e. any 
procedure that involves the execution of executable models, such as simulation, optimization, scenario 
analysis, etc.) in which support for both flattening and CBM has been included. The remainder of this article 
focuses on the elements of the software architecture of Tornado that have made it possible to support both 
flattening and component-based modeling in a transparent manner. In fact, Tornado has implemented two 
versions of CBM, respectively named compiled component-based modeling (CCBM) and interpreted 
component-based modeling (ICBM), which both have their own distinct merits.  

The following sections respectively provide a general introduction to Tornado, an overview of the 
architectural aspects of flattening, CCBM and ICBM, and some experimentation results that illustrate the 
advantages and disadvantages of each approach. Finally, some conclusions are formulated, and a reference to 
future work is made.  

                                                           
1 http://www.mathworks.com 
2 http://www.modelica.org 
3 http://www.dynasim.com 
4 http://www.openmodelica.org 
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2. THE TORNADO FRAMEWORK 

Tornado (Claeys, 2008) is an advanced framework for modeling and virtual experimentation with complex 
environmental systems. It consists of software kernels, toolboxes and APIs (Application Programming 
Interfaces), and was jointly developed by MOSTforWATER NV (Belgium) and BIOMATH (Ghent 
University, Belgium), originally to support the WEST® simulator for wastewater treatment plants 
(Vanhooren et al., 2003).  

Tornado implements a wide variety of virtual experiment types ranging from atomic (non-decomposable) 
experiments such as simulation and root finding, to compound experiments such as optimization, scenario 
analysis and Monte Carlo analysis. Models can be described in the MSL and/or Modelica modeling 
languages, both of which are high-level declarative object-oriented languages. Tornado has been used for 
large-scale studies and has been applied to cluster and grid computing infrastructures (e.g. in the scope of the 
EU project CD4WC5, where a total of 14,400 simulation experiments had to be executed, with an average 
execution time of 30 min each (Benedetti et al., 2008)). 

3. FLATTENING 

Flattening was the first technique for generating executable models that was implemented in Tornado. It is 
performed by a model compiler that reads high-level model descriptions, resolves the composition and 
inheritance hierarchies, and produces a monolithic executable model. This executable model representation 
(which is named Model Specification Language - Executable or MSLE in the scope of Tornado) is made up 
of two parts: 

• The computational information is a block of C code that represents the actual algebraic and/or 
differential equations. Equations from sub-models and base models are analyzed (with respect to the 
variability of the left-hand side variables), sorted (based on variable dependencies) and grouped into 
4 functions: 

o ComputeInitial: Sorted set of equations that are to be computed before the start of the 
simulation process. The left-hand sides (LHS) of these equations are typically parameters 
and initial values of derived state variables. 

o ComputeState: Sorted set of equations that contribute to the state of the system and are 
hence to be computed at every (major or minor) simulation time point. The LHS of these 
equations are algebraic worker variables and derivatives. 

o ComputeOutput: Sorted set of equations that do not contribute to the state of the system 
and therefore only need to be computed whenever output is required. 

o ComputeFinal: Sorted set of equations that are to be computed after the end of the 
simulation process. The LHS are typically algebraic variables that represent objective 
values, to be used in the scope of an encapsulating optimization or scenario analysis loop. 

Parameters and variables used in the computational information are actually elements of large, flat 
arrays that are constructed by the model compiler on the basis of the union of all parameters and 
variables that occur in the original high-level code. However, it needs to be noted that there is no 
one-to-one mapping between the computational information’s equation and parameter/variable sets, 
and those of the original high-level model (this issue is handled by the symbolic information, see 
below). For, through various types of optimizations (Claeys et al., 2007), the model compiler will 
attempt to reduce the final equation and parameter/variable sets. The computational information is 
directly used by the integration solver. 

• The symbolic information is an XML-based representation of the mapping between the original, 
hierarchical model information, and the final, flattened information as it occurs in the computational 
information. Next to this, the symbolic information also contains various meta-information items for 

                                                           
5 http://www.tu-dresden.de/CD4WC 
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each parameter and variable, such as a description, default value, range of validity, unit, etc. The 
symbolic information is mainly intended for user interaction, and does not directly influence the 
simulation process.  

Flattening produces highly efficient models, both from the point of view of simulation speed, as from the 
point of view of size. However, depending on the complexity of the model (in terms of composition 
hierarchy, inheritance hierarchy, number of equations, etc.), a number of undesirable situations may occur 
during the flattening process: 

• Overly long processing times, ranging from tens of minutes to hours. 

• Overly large consumption of memory during processing, ranging from tens of Megabytes to 
Gigabytes. 

• Generation of overly large chunks of computational information that fail to compile with regular C 
compilers. 

It must be noted that in relation to the last point, substantial progress was made since earlier versions of 
Tornado, where both computational and symbolic information were represented in C++ (Claeys, 2008). The 
fact that Tornado now uses XML for symbolic information has increased scalability and has reduced the 
potential for incompatibility issues between different executable model versions. However, in extreme cases, 
computational and/or symbolic information may still grow so large that they cannot be handled anymore. 

As an example, Figure 1A shows the composition graph of a coupled model named Model1 that is composed 
of an atomic model named Model2 and a coupled model named Model3. The latter is composed of two 
atomic models respectively named Model4 and Model5. After flattening (Figure 1B), one single monolithic 
executable model is generated that contains equation sets containing equations originating from model 
Model1 through Model5. 

Figure 1. Flattening vs. CCBM and ICBM. 

4. COMPONENT-BASED MODELING (CBM) 

As it gradually became clear that flattening – although very powerful as such – still has its limitations, 
support for component-based modeling was added to the Tornado framework. In relation to this, two major 
requirements were put forward: 

• Transparency with respect to model descriptions: it should be possible to build flattened and 
component-based executable models from the exact same high-level model descriptions. 

• Transparency with respect to experiment descriptions: it should be possible to use the exact same 
virtual experiments (simulation, optimization, etc.) on executable models generated from the same 
high-level description, regardless of the application of flattening or CBM. 

In order to realize CBM, two types of entity representations are required: one for the components that make 
up the coupled model, and one for the coupled model itself. The component representation is trivial in the 
scope of Tornado, as components can simply be generated through traditional flattening. Indeed, instead of 
applying flattening to a coupled model that uses high-level sub-model representations from a model library, 
one can simply apply flattening to each of these high-level sub-model representations individually. As a 
result, a library of binary components is created that has a one-to-one mapping with the models from the 
original library of high-level language models. The fact that traditional flattening of coupled models and the 
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generation of components can be done on the basis of the same high-level model descriptions satisfies the 
first requirement that was put forward for CBM. 

The representation of coupled models in a CBM context is less trivial. In fact, it was decided to implement 
two different alternatives for Tornado: compiled CBM and interpreted CBM. The difference is that the 
coupled model in case of the first is compiled, while in the case of the latter it is interpreted at run-time by 
the simulation kernel. 

4.1. Compiled Component-based Modeling (CCBM) 

A compiled coupled model for CBM appears to the outside as any other executable model. As a result, the 
second requirement that was put forward for CBM is satisfied, as the same experiment descriptions can be 
applied to both flattened and CCBM executable models (since they appear the same to the outside). 
Internally, compiled coupled models for CBM differ substantially from flattened models. In the case of the 
first, the ComputeInitial, ComputeState, ComputeOutput and ComputeFinal functions do not contain any 
equations, but simply call the corresponding Compute functions of each underlying component in an 
appropriate sequence (the ComputeInitial function of a coupled model calls the ComputeInitial of each of its 
components, etc.). Also, the values of output variables from one component are transferred to the 
corresponding input variables of the next. The component call sequence is static and is determined when the 
coupled model code is generated. It depends on the input/output dependencies between sub-models and is 
related (but not equal) to the sequence of equations in the case of flattening. In order to maximize the 
efficiency of transferring output data to input data, de-referenced C pointer assignment is used. These 
pointers refer to the data containers, within the components’ computational information, which correspond to 
the variables that are to be assigned. As a static pointer lookup table can be constructed during initialization 
of the executable model, very little time is lost due to data transfer during the simulation process itself. 

The advantage of compiled CBM is that it adds little overhead to the execution of the Compute functions of 
the individual components. However, for creating the coupled model, C code generation as well as 
compilation is still required. Evidently, the complexity of this code is far less than in the case of flattening, 
and scalability is therefore much better. Typically, the time needed to generate a compiled coupled model for 
CBM is less than 3s. 

CCBM is especially useful in design exercises, where a user wants to be able to quickly evaluate the effects 
of interactively modifying a coupled model, e.g. when adding or eliminating a reactor of a treatment plant. 
For these types of interactive processing, a number of seconds to be spent on compilation before the start of a 
(relatively efficient) simulation can easily be afforded.  

For the composition graph of Figure 1A, Figure 1C shows that the CCBM executable model consists of 3 
components (Model2, Model4 and Model5) that each have been generated through flattening, and 2 compiled 
coupled models (Model1 and Model3). The Compute functions of Model1 respectively call the corresponding 
Compute functions of Model2 and Model3 and perform the required data transfer. Similarly, the Compute 
functions of Model3 respectively call the corresponding Compute functions of Model4 and Model5 and 
perform the required data transfer. 

4.2. Interpreted Component-based Modeling (ICBM) 

Although very short, there are situations in which one cannot afford to spend 2 or 3s on the generation of a 
compiled coupled model. In the case of the EU project AquaFit4Use6 for instance, automated optimization of 
water networks is required. These water networks are modeled in Tornado as couplings of simple algebraic 
steady-state models. Whereas the computational complexity of each model is very low, care must be taken to 
efficiently deal with the large number (10,000 or more) of coupled model alternatives that are to be 
evaluated. Therefore, Tornado was recently provided with so-called interpreted CBM.  

In ICBM, Compute functions of underlying components are again called in an appropriate sequence. 
However, this is not done from a compiled chunk of custom executable model code, but rather under run-
time control of the simulation kernel. Before the simulation starts, the simulation kernel is provided with a 
sorted list of components, and information on all input/output links. On the basis of this, the kernel is able to 
loop over all components in the appropriate sequence at run-time, call the appropriate Compute methods, and 
perform the required assignments. Evidently, the mere fact that the simulation kernel has to loop over the list 

                                                           
6 http://www.aquafit4use.org 
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of components for invoking Compute methods, as well as over the list of input/output links to perform 
assignments, incurs a loss of performance with respect to CCBM, where these lists were expanded during the 
code generation. 

Figure 1D shows a similar situation as in Figure 1C for the example that we have considered. However in the 
case of ICBM, Model1 and Model3 do not have a persistent, compiled representation, but reside entirely in 
memory.  

5. RESULTS AND DISCUSSION 

Flattening, CCBM and ICBM were applied to a number of cases (all wastewater treatment plant models (cf. 
Claeys et al., 2007), except for PredatorPrey, which is a system dynamics model) with varying complexity. 
Table 1 lists the number of components for each case, as well as the number of parameters, algebraic 
variables and derived variables of the corresponding flat models. 

 #Comps #Params #AlgVars #DerVars 

PredatorPrey 10 12 27 2 

ASU 9 652 612 20 

Benchmark 16 969 1111 108 

Orbal 30 6600 3265 250 

SBR 8 258 816 154 

Umbilo 19 840 1620 70 

Table 1. Complexity of test cases. 

Table 2 respectively lists the compilation time, simulation time and relative speed of simulation for 
flattening, CCBM and ICBM, applied to each case. Each simulation was run with an advanced variable step 
size integrator (CVODE7) as well as with a traditional fixed step integrator (Runge-Kutta 4). As expected, 
flattening results in the longest compilation times, and shortest simulation times. ICBM requires no 
compilation, but has the longest simulation times. CCBM is a compromise between both extremes as it 
combines relatively short compilation times, with relatively short simulation times.  

 Compilation time (s)  Simulation time (s) Relative speed of simulation 

 Flat CCBM ICBM Integrator Flat CCBM ICBM CCBM vs.  
Flat 

ICBM vs. 
Flat 

ICBM vs. 
CCB 

PredatorPrey 1 1 0 CVODE 1 1 1 100 100 100 

    RK4 17 28 108 61 16 26 

ASU 2 1 0 CVODE 3 3.5 5.5 86 55 64 

    RK4 36 41 59 88 61 69 

Benchmark 3 1 0 CVODE 4 12 14 33 29 86 

    RK4 143 147 197 97 73 75 

Orbal 40 1 0 CVODE 29 33 47 88 62 70 

    RK4 614 669 1034 92 59 65 

SBR 5 1 0 CVODE 1 1 1 100 100 100 

    RK4 6 7 7 86 86 100 

Umbilo 5 1 0 CVODE 39 112 153 35 25 73 

    RK4 4678 5521 7231 85 65 76 

Table 2. Compilation and simulation times for test cases. 

Interestingly, depending on the type of integrator used, the simulation times of CCBM appear to be either 
closer to those of flattening, or closer to those of ICBM. In order to explain this phenomenon, it is important 
to also look at the simulation results, i.e. the question whether the simulated values are the same in case of 
application of flattening, CCBM or ICBM. As CCBM and IBCM are based on exactly the same logic (same 
sequence of components, same variable assignments, etc.), it is not surprising that the simulation results of 
CCBM and ICBM are always the same. However, this does not apply to the results obtained through 
flattening. Flattening leads to monolithic Compute functions that contain equations that do not necessarily 
have the same sequence as in the case of CCBM/ICBM. As a result of the inherent limited numerical 
precision of floating point values, these differences in execution sequence lead to small differences (less than 

                                                           
7 https://computation.llnl.gov/casc/sundials/main.html 
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1%) in the simulation results. As the simulation results are different, the number of steps taken by variable 
step size integrators such as CVODE may also be different. As we have observed that the number of 
simulation steps is often less in the case of flattening (e.g. for Benchmark and Umbilo), it is not surprising 
that the discrepancy between the simulation times of flattening vs. CCBM is larger in these cases. As a matter 
of fact, since the simulation results influence the number of integration steps, and hence the simulation time, 
one should only consider fixed step integrators to evaluate the inherent efficiency of flattening, CCBM and 
ICBM. By only considering the RK4 integrator, we see that in this case CCBM offers on average 84% of the 
performance of flattening, whereas ICBM only offers 60% of that performance. 

6. CONCLUSION 

After a number of years of experience with the application of flattening, we have concluded that – albeit very 
advantageous in the case of compound virtual experiments requiring many simulation runs – flattening does 
not offer the flexibility required in the scope of the interactive design of treatment plants and/or the 
automated optimization of plant layouts. Therefore, any software environment that attempts to provide 
support for various types of modeling exercises including design and optimization, should allow for the 
application of CBM next to flattening, in a fully transparent manner. In the scope of the Tornado framework, 
we have succeeded in successfully implementing two flavors of CBM (compiled and interpreted) next to the 
support for flattening that was already present, fully taking into account transparency-related requirements. 

In future work, the effects of the differences in sorting of monolithic equations sets (flattening) versus 
components (CBM) will be studied further. As such, we hope to obtain more insight into the causes of the 
lower number of simulation steps that is required by variable step size integrators in the case of flattening, 
versus the number that is required by CBM. 
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