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Abstract Earlier papers by Gustafson, Kortanek, Sweigart and others describe models for con-
trolling air pollution, consisting of chemically inert pollutants like sulphur dioxide. It was assumed
that the concentration contributions from the sources added up at each receptor point. The goal
was to achieve acceptable air quality for each receptor point, generally defined by the annual mean
concentration of the pollutant under study. The set of polluting sources was split in n source-
classes, where the sources in each class were regulated in the same way and independently of the
other source-classes. One such class could be motor vehicles which are required to use the same
quality of fuel, since it is of course not possible to regulate the pollution output from each vehicle
separately. The idea was to determine the relation between the strength of each source-class and
its contribution to the annual mean concentration at each receptor point in the air quality control
area. Then one calculates how the strengths of sources need to be reduced to achieve the desired
air quality. Generally, there are many reductions policies which achieve this goal and one seeks to
calculate the policy which achieves this at the lowest total regulation cost. This model requires
large amounts of data, since one needs to have lists of all source-classes as well as meteorological
information in order to calculate the contributions to the mean concentration. Here we propose
to discretise the set of weather states as well. Each weather situation is defined by meteorological
parameters like wind speed, wind direction, mixing height and so on. The idea is to represent the
set of all possible weather situations in the control area by k points w1, . . . , wk in the meteorolog-
ical parameter space with associated probabilities p1, . . . , pk. Thus the climate in the air quality
control area is represented by this discrete probability distribution. Next we introduce standards
for each weather state defined by the functions w1, . . . , wk. These standards are determined such
that the permissible pollution has a desirable distribution, e.g. such that the probability of very
high concentrations is low. It is assumed that it is known which weather states give the highest
pollution concentrations. Hence we get k constraints at each receptor point and we may calcu-
late, using semi-infinite programming, the reductions policy which satisfies these constraints at
minimum control costs. Similar models may be developed for water pollution problems.
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1 INTRODUCTION

1.1 Pollutants

We consider the task of maintaining a satisfactory air quality in an air quality control area, e.g.
a city. Several pollutants may be observed from measurements, e.g. sulphur dioxide SO2 and
carbon monoxide. For further details see e.g. (Air Trends, 2008). The goal is to achieve that
the concentrations of all identified pollutants stay below legally defined tolerances throughout the
control are at all times. This is achieved by regulating the emissions from identified sources. We
will describe how to construct a mathematical model for this purpose.

1.2 Air quality standards

We will limit our discussion to the chemically inert pollutant SO2, which has been studied in many
contexts. See (Fahlander et al., 1974) and (Stavins, 2005). We assume that there is a standard
requiring that the annual mean concentration is not allowed to surpass a given number b at any
point in the control area. In addition, there may be standards which must not be surpassed for
more than a time period of predetermined length.

1.3 Source inventory and cost functions

One needs a list of the strengths of all sources which contribute to the pollution. The idea is to
impose constraints on the emissions of these sources. Some sources cannot be regulated at all,
maybe because they are outside the control area, possible in another country, and their contri-
butions make up what here will be termed the background pollution. The remaining sources will
be split into n source-classes, where the polluters in each class are to be regulated in the same
way. Hence we have n control variables, namely the fractions Er with which each source-class r is
required to cut back its emissions. The associated cost function will be denoted cr(Er) and it is
assumed to be differentiable, convex and nondecreasing.

1.4 Impact

Each source-class, in the future termed pollutor, gives a contribution to the concentration in the
air at each point on the ground (henceforth called receptor point). It is assumed that the contri-
butions from the pollutors add up and that the contribution from each pollutor is proportional
to its strength. Hence we get a linear constraint for each receptor point and these are infinitely
many. Thus the techniques of semi-infinite programming will be required. See (Glashoff–Gustafson,
1983), p 18 and also (Goberna-López, 1997) as well as (Reemtsen-Rückmann, 1998). We note that
the observed pollution at a given receptor point depends also on the weather situation which is
specified by meteorological parameters such as wind speed and direction and index for stability
of the atmosphere. An overview of models which connect the properties of a pollutor and the
weather situation to its contribution to the pollutant concentration in the control area is given in
(Moussiopoulos, N., 1996). For a long-term model we need information about the climate, which
we specify by listing the typical weather states defined by the meteorological parameter vectors
w1, . . . , wk as well as their frequencies p1, . . . , pk. Thus we determine the transfer functions for
each state and obtain the annual mean by averaging using the weights p1, . . . , pk.
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2 MATHEMATICAL MODEL FOR AIR QUALITY MAN-
AGEMENT

We use the notations and definitions from Section 1. The control area is represented by the two-
dimensional set S. Pollutor number r, r = 1, . . . , n is assumed to have reduced its emission with
the fraction Er, where

0 ≤ Er ≤ er ≤ 1, r = 1, . . . , n, (1)

where er is a bound for the technically possible reduction.
For weather situation i, i = 1, . . . , k with the frequency pi and the pollutor r, r = 1, . . . , n we

have calculated the transfer function
ui

r(s),

which describes the impact of pollutor r at the receptor point s ∈ S and the transfer function of
the background emissions is

ui
0(s).

After reduction we have the remaining pollutant concentration
n∑

r=1

(1− Er)ui
r(s) + ui

0(s), s ∈ S.

Since the standard for weather state number i is bi we have for a feasible abatement policy
n∑

r=1

Eru
i
r(s) ≥

n∑
r=0

ui
r(s)− bi, s ∈ S, i = 1, . . . , k, (2)

0 ≤ Er ≤ er, r = 1, . . . , n. (3)

Hence k sets of inequalities of the type of (2) must be satisfied for a feasible reductions policy. We
note that (2) may be interpreted as the condition that at least the difference between the original
pollution and the standards for all the weather conditions must be removed. We next discuss the
relation with standards for the annual mean pollution concentration. The transfer functions ur

and standard b for the annual mean concentration are given by

ur(s) =
k∑

i=1

piu
i
r(s), r = 0, . . . , n, (4)

b =
k∑

i=1

pibi. (5)

If E defines a feasible reduction policy, satisfying (2) and (3) we have, since

pi ≥ 0,
k∑

i=1

pi = 1,

n∑
r=1

Erur(s) ≥
n∑

r=0

ur(s)− b ≥ 0. (6)

We observe that if E satisfies (2) and (3), then it also satisfies (3) and (6), but the converse does
not need to be true. The data acquisition effort is about the same for (2), (3) as for (3), (6) but
the former sets of conditions gives more flexibility is setting standards for handling in advance
extremely adverse conditions associated with unfavourable weather conditions which will occur
with a known probability.

Many vectors E ∈ Rn may define a feasible reductions policy. In Subsection 1.3 we introduced
the control costs cr(Er). In the next Section we will show how to minimise the combined control
costs

n∑
r=1

cr(Er),
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and it is of interest to compare this minimal cost with the cost of the reductions policy actually
chosen in a practical situation.

3 CALCULATING AN OPTIMAL REDUCTIONS POL-
ICY

In this Section we will need the following

Theorem 1 Let S be a compact set, C(S) the Banach space of continuous functions defined on
S and equipped with the maximum norm. Let L be a bounded linear functional on C(S). Then L
may be represented by the Stieltjes integral

L(f) =
∫

S

f(s)dα(s),

with
||L|| =

∫
S

|dα(s)|.

Remark 1 The linear functional L is termed positive if f(s) ≥ 0, s ∈ S implies L(f) ≥ 0.

We give

Example 1 Let f ∈ C(S) and put

L(f) =
q∑

i=1

xif(si), si ∈ S.

Then

||L|| =
q∑

i=1

|xi|,

and the Stieltjes integral is represented by a sum.

To determine an optimal reductions policy we consider the optimisation problem

min
E∈Rn

n∑
r=1

cr(Er),

subject to the constraints
n∑

r=1

Eru
i
r(s) ≥

n∑
r=0

ui
r(s)− bi, s ∈ S,

Er ≥ 0, r = 1, . . . , n,

−Er ≥ −er r = 1, . . . , n.

This problem may be written

min
E∈Rn

n∑
r=1

cr(Er),

subject to the constraints

n∑
r=0

ui
r(s)− bi −

n∑
r=1

Eru
i
r(s) ≤ 0, s ∈ S, i = 1, . . . , k,

−Er ≤ 0, r = 1, . . . , n,

Er − er ≤ 0, r = 1, . . . , n.
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We note that there is a feasible E ∈ Rn which gives strict inequalities. (Slater’s condition). In
addition, the cost function has a finite minimum. Therefore we may use the theorem on Lagrangian
duality on p224 in (Luenberger, 1969) to determine an optimal solution. We start by defining the
Lagrangian dual to our optimisation problem:

max min
E∈Rn

n∑
r=1

cr(Er) +
k∑

i=1

∫
S

dαi(s)∆i(s)−
n∑

r=1

λrEr +
n∑

r=1

µr(Er − er).

Here we have

∆i(s) =
n∑

r=0

ui
r(s)− bi −

n∑
r=1

Eru
i
r(s),

and the maximisation is carried out over

dα(s) ≥ 0, λr ≥ 0, µr ≥ 0, r = 1, . . . , n.

We arrive at the optimality conditions:
n∑

i=1

∫
S

dαi(s)ui
r(s) + λr − µr = c′r(Er), r = 1, . . . , n,

λrEr = 0, r = 1, . . . , n,

µr(Er − er) = 0,

dαi(sji
)∆i(sji

) = 0, j = 1, . . . , qi.

The functions ∆i has a local maximum at sji
if dα(sji

) > 0. The optimal measures are given by
the finite sums ∫

S

dαi(s)g(s) =
qi∑

j=1

g(sji
),

for any continuous function g(s)

4 IMPLEMENTING A FEASIBLE REDUCTIONS POL-
ICY

4.1 Introduction

The optimal reductions policy described in Section 3 may be difficult to implement in a practical
context. However, it may be used as a bench-mark with which one may compare the efficiency of
other policies which may be more palatable from a political point of view and also guarantee that
an acceptable air quality is obtained, albeit at a higher combined control cost. We discuss here
some alternative strategies.

4.2 Proportional reduction

All pollutors are required to cut back their emissions with the same fraction. The latter is deter-
mined to be sufficiently large to guarantee compliance with standards. This strategy will penalise
pollutors which at the start already have low emissions and will come cheap for those who start
with high emissions.

4.3 Pollution tax

Many countries have introduced taxes on pollutants emitted into the environment. In the ideal sit-
uation all pollutors reduce their emissions until the marginal cost of cutting back emissions equals
the tax. Thus raising the tax will lead to a cleaner environment and higher combined control costs.
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4.4 Cooperative schemes

It may be such that the cost for cutting back emissions may be different for different pollutors.
Then it would be cheaper for some pollutors to pay other sources for cleaning up. (Carbone et al.,
1978) describe a scheme where the pollutors have the collective responsibility of implementing a
reductions strategy which satisfies the standard. If they cooperate, they could choose an optimal
policy which gives the minimal combined cost.

4.5 Trading emission allowances

(Stavins, 2005) describes systems for SO2 allowances trading in the US. Their implementation
has resulted in major improvements in the form of a cleaner environment and lower combined
abatement costs. For years the Norwegian government has pushed for the implementation of an
international system for trading with carbon dioxide emission allowances. However, in a recent
article in the Norwegian business daily Dagens Næringsliv it is claimed that this trade has not
resulted in any improvement in the global situation. Both Norway and the rest of the world com-
bined release more carbon dioxide into the atmosphere than a few years ago.

4.6 CONCLUSIONS

We have described air quality control models for calculating cost-efficient abatement policies. In
comparison to earlier related papers we have extended the computational scheme to convex, not
just linear, cost functions. Without needing more data than before, e.g. in (Fahlander et al.,
1974) we have shown how to introduce different standards for different weather states, not just
guaranteeing that the annual mean pollution concentration is acceptable. Thus we may calculate
a policy which also limits the pollutant concentration in adverse situations.
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