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Abstract: It is well known that most of the financial and economic time series possess several stylized 
properties which include time-varying means and variances (Granger and Teräsvirta, 1993; Franses and van 
Dijk, 2000; and Tsay, 2002). Moreover, there is strong evidence that most of the financial return series are 
not normally distributed. They usually exhibit excess kurtosis which means that there are more probability 
mass in the tails of the marginal or conditional distribution.  

Linear time series models such as autoregressive and moving average models assume that the conditional and 
unconditional distributions of the time series are Gaussian with time-independent variances. Nonlinear time 
series models such as threshold (Tong, 1990) and GARCH models relax the constant variance assumption but 
still ally with the assumption that the financial returns are conditionally normal distributed.  

Mixture-typed time series models, introduced by Wong and Li (2000), are potentially useful in modelling of 
financial returns. The models are able to capture serial correlations; time-varying means and volatilities; and 
the shape of the conditional distributions can be time varied from short-tailed to long-tailed, or from 
unimodal to multi-modal. However, as these models ally with the assumption that return series in each 
component is conditionally Gaussian, it may underestimate the occurrence of extreme financial events, such 
as market crashes.  

Wong et al. (2009) extend the mixture-typed time series models by replacing the Gaussian assumption with 
the Student t distribution. The Student t-mixture autoregressive (TMAR) model consists of a mixture of g 
autoregressive components with Student t error distributions. As the tails of Student t distribution can be 
much heavier than that of normal distribution, it would be able to accommodate some aberrant returns 
occasionally observed in financial markets. The use of t distributed errors in each component of the model 
allows for conditional leptokurtic distribution which could account for the commonly observed unconditional 
kurtosis in the financial data. They successfully apply the class of models to the US 3-year Treasury Constant 
Maturity Rate. Comparison studies indicate that TMAR model has better performance of interval prediction 
over other commonly used time series models.    

It is well known that interest rates series and stock indices series behave differently. For example, stock 
indices behave like a random walk while interest rates evolve with mean-reversion. Hence, the observations 
for interest rates data in Wong et al. (2009) cannot be directly generalized for stock indices data. In this 
paper, we apply the class of TMAR models to the return series of Hong Kong Heng Sang Index. We find that 
the TMAR model also has better performance of interval prediction in the case of stock index data. 
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1. INTRODUCTION 

Strong evidence has indicated that most of the financial return series are not normally distributed. They 
usually exhibit excess kurtosis which means that there are more probability mass in the tails of the marginal 
or conditional distributions. Since most of the time series models ally with the assumption that return series is 
marginally and/or conditionally Gaussian, it may underestimate the occurrence of extreme financial events, 
such as market crashes.   

The mixture autoregressive (MAR) model introduced by Wong and Li (2000) consists of a mixture of g 
autoregressive (AR) components. There are several properties which make the MAR process potentially 
useful in modeling nonlinear time series. The MAR model is able to capture serial correlations; time-varying 
means and volatilities; and the shape of the conditional distributions can be time varied from short-tailed to 
long-tailed, or from unimodal to multi-modal. However, its alliance with the assumption that the return series 
in each of the autoregressive component is conditionally Gaussian may make it unable to estimate the 
occurrence of extreme financial events accurately. 

Wong et al. (2009) extend the MAR model by replacing the Gaussian assumption with the Student t  
distribution. The Student t distribution provides heavier tails than normal distribution and would be able to 
accommodate some aberrant returns occasionally observed in financial markets. The degrees of freedom in 
the Student t distributions are parameters which can be used to adjust the degree of thickness of the 
conditional distributions according to the actually observed data. As the degrees of freedom in a Student t 
distribution approaches infinity, the distribution approaches normal. Hence the MAR model is a limiting case 
of the Student t-mixture autoregressive (TMAR) model. 

In this paper, we apply the class of TMAR models to the return series of Hong Kong Heng Seng Index. 
Results from comparison studies are reported which indicate that TMAR models provides a better description 
of conditional distributions of the return series than other models allied with the Gaussian assumption.  

The paper proceeds as follows. Section 2 provides a brief review of TMAR modelling. Section 3 presents the 
empirical results. The discussion and conclusion follow in the final section. 

2. THE TMAR MODEL 

2.1. Model specification 

Wong et al. (2009) introduce the class of Student t-mixture autoregressive models. This model consists of a 
mixture of g autoregressive components with Student t distributed innovations. A TMAR(g; p1, p2, …, pg) 
model is defined by 
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Here, ( )1t tF y −F  is the conditional cumulative distribution function of Yt given the past information, 

evaluated at yt; Ft is the information set up to time t; ( )
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Fν ⋅ is the cumulative distribution function of the 

standardized Student t distribution with kν  degrees of freedom; and mixing proportions α1 + … + αg = 1 

with αk > 0, for k = 1, …, g. It should be noted that the probability distribution function (p.d.f.) of a 
standardized (i.e. normalized to have unit variance) Student t distribution with ν degrees of freedom is given 
by  
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where 2 < ν < ∞, and Γ(⋅) is the gamma function. 

The first and second conditional moments of TMAR model are same as that of MAR model. The conditional 

expectation of yt is ( ) ( )1 0 1 1 ,1 1 .
k k

g g
t t k k k t kp t p k k tk kE y y y− − −= == α φ + φ + + φ = α μ F   The shapes of the 

conditional distributions may change from unimodal to multi-modal. Therefore, the conditional expectation 
of yt may not be the best predictor of the future values. The conditional variance of yt is 

( ) ( )2
2 2
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t t k k k k t k k tk k ky − = = == α σ + α μ − α μ  F  The first term summarizes the conditional variance 
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on the past “errors”. The second and third terms model the change of the conditional variance due to the 
difference in the conditional means of the components. 

The first-order and second-order stationarity conditions for TMAR model are exactly the same as that for 
MAR model. Theorem 1 gives the condition of first-order stationarity for a general TMAR model while 
Theorem 2 gives the condition for second-order stationarity for a TMAR(g; 1, …, 1) model. The proofs of all 
theorems are given in a longer version of Wong et al. (2009). Let p = max(p1, …, pg). 

Theorem 1. A necessary and sufficient conditions for the process Yt to be first-order stationary is that the 

roots z1, …, zp of the equation ( )1 11 0p g i
k kii k z−

= =− α φ =   all lies inside the unit circle, where φki = 0 for       

i > pk. 

Theorem 2. Suppose that the process Yt following a TMAR(g; 1, …, 1) model is first-order stationary. A 
necessary and sufficient condition of the process to be second-order stationary is 2 2

1 11 2 21α φ + α φ + +  
2

1 1.g gα φ <  

It is possible that a mixture of an explosive AR component and a stationary AR component results in an 

overall stationary process. For illustration, we consider the following TMAR(2; 1, 1) model, ( )1t tF y − =F  

( ){ } ( ){ }10 1 20 10.75 0.5 5.0 0.25 1.4 1.0 .t t t tF y y F y y− −− + −  The first component in the above model is 

stationary while the second component is non-stationary. The first-order and second-order stationarity 
conditions for the TMAR(2; 1, 1) model are 1 11 2 21 1α φ + α φ <  and 2 2

1 11 2 21 1α φ + α φ < , respectively. It is easy 

to verify that this process Yt satisfies the first-order and second-order stationarity conditions and results in an 
overall stationary process. 

The major advantage of the TMAR model is its ability to model the tails of the conditional distribution. 
Owing to the Gaussian assumption, MAR models are often unable to explain the leptokurtosis in the data. On 
the other hand, the TMAR model is more flexible in modelling the tails due to the Student t distribution 
assumption on each component series of innovations. The degrees of freedom of the Student t distribution in 
the kth component (νk) can be fixed in advance or inferred from observations. The shape and tails of the 
conditional distribution can be effectively characterized by the combination of various values of degrees of 
freedom in all components. A small degrees of freedom in a component will contribute more to the heaviness 
of the tails of the overall conditional distribution. When all the component degrees of freedom tend to 
infinity, the TMAR model is reduced to the MAR model. Therefore, the MAR model is a limiting case of the 
TMAR model. 

Kurtosis of Yt, which is used to describe the degree of heavy-tailedness of the distribution, can be computed. 
The condition for the existence of the fourth-order moment of a stationary TMAR model can be derived. For 
illustrative purpose, we only consider the TMAR(g; 0, …, 0) model with φk0 = 0, for k = 1, …, g. Note that 
the first-order and third-order moments of this model are both zeros while the second-order moment is 

2
1

g
k kk = α σ . The existence condition of the fourth-order moment is given in the following theorem. 

Theorem 3. The fourth-order moment of a stationary TMAR (g; 0, …, 0) model with φk0 = 0, for k = 1, …, g 
exists if and only if νk > 4. 

The existence condition of the fourth-order moment for TMAR is the same as those for the Student t 
distribution. The expression of the fourth-order moment for a stationary TMAR (g; 0, …, 0) model with φk0 = 

0, for k = 1, …, g, is given by ( ){ } ( )4
13 2 4g

k k k kk = α σ ν − ν − where   νk > 4. It can be shown that the kurtosis 

of Yt is generally greater than 3 (i.e., the TMAR model caters for heavier conditional distributions as 
compared to Gaussian processes). It can be noted that the expression of the fourth-order moment for TMAR 
model is similar to that for MAR model with the additional terms ( ) ( )2 4k kν − ν −  while the expressions of 

the variance are the same for both models. Since the additional terms are larger than 1 unless νk → ∞, the 
(marginal) distribution from the TMAR model can be much more heavy-tailed than that from MAR model. 

The autocorrelations for the TMAR model are similar to that for MAR models. They satisfy a system of 
equations similar to the Yule-Walker equations. For a second-order stationary process Yt that follows an 

TMAR model, it is easy to show that ( )1 1 ,p g
j k kii k j i= = −ρ = α φ ρ   for j = 1, …, p where ρj is the lag j 

autocorrelation. Note that these equations are similar to the Yule-Walker equations for the ordinary AR(p) 
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process where the coefficient 1
g

k kik = α φ replaces the lag i coefficient of the AR(p) process. The range of 

possible autocorrelations is as great as that of the standard AR process, since the AR model is just a limiting 
case of the TMAR model. 

2.2. Estimation 

The Student t density function can be obtained from a normal scale mixture model (see, e.g., Peel and 
McLachlan, 2000). Suppose that the observation X is generated from the following model, 

( ) ( )2; ,x w h w dwφ μ σ , where φ(·) denotes the p.d.f. of the normal distribution with mean μ and variance σ2, 

and h(·) is a p.d.f. of any distribution. The function h(·) is employed to control the magnitude of the variance 
in the normal density function. Assume that we choose the gamma density function for h(·), then the random 

variable W is distributed as ( ){ }~ gamma 2, 2 2W ν ν − . After integrating out w, we get a standardized 

Student t distribution with location parameter μ, scale parameter σ and degrees of freedom ν. 

The log-likelihood for the TMAR model is constructed by the normal scale mixture model. Note that the log-
likelihood does not admit a closed form solution if the Student t density function is applied directly 
(McLachlan and Krishnan, 1997). Assume that we have observations Y = (y1, y2, …, yn) generated from a 
TMAR model. Let Z = (Z1, …, Zn) be a g × n unobservable random matrix, where Zt = (Zkt), for t = 1, …, n, is 
a g-dimensional column indicator vector showing the origin of the kth observation, i.e., Zkt = 1 if yt is 
generated from the kth component of the model and Zkt = 0 otherwise. Analogous to the formulation of Z, we 
consider another missing random matrix, W = (W1, …, Wn), where Wt is also a g-dimensional vector. Given 

zkt = 1, the conditional distribution of Wt is { } ( ){ }1 ~ gamma 2, 2 2kt kt k kW z = ν ν −  and W1, …, Wn are 

distributed independently. Let ( ) ( ) ( )1 1 1 1, , , , , , , ,g g g−
′ ′ ′′ ′α = α α ν = ν ν θ = θ θ    with  ( 0 1, , ,k k kθ = φ φ   

), , 1, , ,
kkp k k g′φ σ =  and the vector of parameters of the TMAR model is defined as ( ), , ′′ ′ ′Ψ = α θ ν . The 

conditional log-likelihood is ( ) ( ) ( )1 2 3= α + ν + θ     where  
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Here, 0 1 1 k kkt t k k t kp t pe y y y− −= − φ − φ − − φ . 

The EM algorithm (Dempster et al., 1977) is adopted for the estimation of the parameters of the TMAR 
model. The standard errors of the parameter estimates can be computed by Louis’ method (1982), after the 
EM estimation. The details of the EM estimation algorithm for estimating the class of TMAR models are 
given in Wong et al. (2009). 

2.3. Model selection 

There are two aspects of model selection in the TMAR models, namely, the number of components (g) and 
the orders of each AR component (pk). We propose to use the Bayesian information criterion (BIC) 
(Schwarz, 1978) for model selection.  Although the use of BIC to choose g is somewhat non-standard as it 
corresponds to testing problems with nuisance parameters that do not exist under the null hypothesis (Davis, 
1987), it can serve as a rough guide in model selection. Wong et al. (2009) illustrate the performance of the 
minimum BIC procedure with simulation studies. They find that the minimum BIC procedure performs well.  

3. THE HONG KONG HANG SENG INDEX  

The Hong Kong Hang Seng Index is a market-valued weighted index of constitute stocks that are 
representative of the Hong Kong market. Our study period starts from January 2, 1996 and ends on 30 
December, 2005 (2471 daily observations). The data set is taken from the webpage of Yahoo! Finance, which 
is publicly available.  
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The original index series yt and the log return series rt (2470 observations) are shown in Figures 1 and 2 
respectively. It is clear that the original series yt is non-stationary. The log return series appears to be 
stationary. It can be noticed that Hong Kong market was greatly affected by the Asian Financial Crisis in 
October 1997. The Hang Seng Index dropped by 14.73% on 28 October 1997 and rose by 17.25% on 29 
October 1997. The excess kurtosis of log return series is 11.09 which suggest that models allied with 
Gaussian assumption may not describe the data well. 

We find that a TMAR(3;0,6,6) model is the best fitted model to the return series. It minimizes the BIC over 
all two- and three-component TMAR models. The parameter estimates and standard errors are shown in 
Table 1. Note that it is a TMAR model without intercept. In fact, we have considered models with intercepts. 
However, none of them is chosen by the minimum BIC procedure. The value of BIC is 8935.15. A close 
examination of this model reveals that the two AR(6) components are both non-stationary. However, after 
mixing two non-stationary components with a white noise component, the resulting TMAR model is 
stationary. This is a particularly nice feature of mixture-type time series models. Note that as all νk > 4, the 
kurtosis exists for this TMAR model.  

For comparison, MAR model is also fitted to the return series. The best MAR model is MAR(3;0,6,6) model 
without intercept and the value of BIC is 8983.19. The parameter estimates and standard errors are shown in 
Table 2. Note that the fitted MAR model also comprises of two non-stationary AR(6) components. The 
structures of TMAR(3;0,6,6) and MAR(3;0,6,6) are actually similar except that in TMAR model, the degrees 
of freedom parameters, νk, in the t distributions are used to control the shape of conditional distributions. 

Besides MAR model, we try to compare the TMAR model with autoregressive (AR), moving average (MA), 
random walk (RW), generalized autoregressive conditional heteroscedastic (GARCH) and GARCH with 
Student t distribution (GARCH-t) models on the basis of their ability to describe the predictive distribution of 
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Figure 1. The Hong Kong Hang Seng Index. 
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 Figure 2. The log return series of the Hong Kong Hang Seng Index. 

Table 1. Estimation result of TMAR(3;0,6,6) model  

k  kν  kα  kσ  1kφ  2kφ  3kφ  4kφ  5kφ  6kφ  

1 Estimate 4.2330 0.5612 1.0633       

 s.e. 1.3521 0.0444 0.1375       
           

2 Estimate 4.7215 0.2489 1.7957 0.0656 -0.2714 -0.2196 -0.5494 -0.2866 -0.2460 

 s.e. 1.2684 0.0336 0.1543 0.0840  0.0548 0.0537 0.0546 0.0498 0.0635 
           

3 Estimate 4.2271 0.1899 1.3489 0.4100 0.0934 0.4959 0.6145 0.2524 0.3661 

 s.e. 1.7638 0.0231 0.2100 0.0636 0.0540 0.0510 0.0660 0.0535 0.0565 
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the return series. The fitted models are selected based on minimum BIC Criterion which are shown in Table 
3. Note that the processes implied by both fitted GARCH-type models are close to non-stationary as the sums 
of the GARCH parameters are close to one.  

 

 

The empirical coverages of the in-sample one-step-ahead prediction intervals, based on ( )1t tF r + F , t = 9, 10, 

…, 2470, for the return series generated by each model are given in Table 4. If a model describes the 
conditional distributions of the data well, the empirical coverages of the one-step-ahead prediction intervals 
generated should be close to the nominal levels. Note that the absolute percentage deviations of the empirical 
coverage to the nominal level are shown in brackets. Generally speaking, performance of prediction under 
TMAR model is better than those of MAR, AR, MA, RW, AR-GARCH and GARCH-t models. The 
empirical coverages of the TMAR-based prediction intervals are closer to the nominal coverages. On the 
other hand, for all models, the deviations of empirical coverages from the nominal coverages are increased as 
the level of prediction intervals is decreased. 

Table 2. Estimation result of MAR(3;0,6,6) model  

k  kα  kσ  1kφ  2kφ  3kφ  4kφ  5kφ  6kφ  

1 Estimate 0.6064 0.8852       

 s.e. 0.0324 0.0402       
          

2 Estimate 0.2168 2.0700 0.0240 -0.2543 -0.2393 -0.5440 -0.4450 -0.2647 

 s.e. 0.0253 0.0948 0.0641 0.0565 0.0745 0.0636 0.0648 0.0723 
          

3 Estimate 0.1768 1.4120 0.4598 0.2158 0.5586 0.5046 0.3408 0.3557 

 s.e. 0.0198 0.0912 0.0596 0.0549 0.0806 0.1017 0.0622 0.0659 

 

Table 3. Estimation results of commonly used time series models 

Model Fitted Model 

AR(4) ( )1 2 3 40.0330 0.0546 0.1006 0.0561  where ~ 0, 2.8803t t t t t t tr r r r r N− − − −= − + − + ε ε   

MA(3) ( )1 2 30.0364 0.0472 0.0925  where ~ 0,2.8883t t t t t tr N− − −= ε + ε − ε + ε ε   

RW ( ) where ~ 0,2.9246t t tr N= ε ε   

AR(1)-GARCH(1,1) ( ) 2
1 1 10.0632 , ~ 0,1  where 0.0151 0.0709 0.9255t t t t t t t tr r h N h h− − −= + ε ε = + ε +  

GARCH(1,1)-t 2
5.7851 1 1, ~  where 0.009289 0.0511 0.9469t t t t t t tr h t h h− −= ε ε = + ε +  

 

Table 4. Empirical coverage of the (1 – α)100% prediction intervals for the Hong Kong Hang 
Seng Index  

Model 

(1 – α)100% 

99 98 95 90 80 70 60 50 

TMAR(3;0,6,6) 99.11 97.93 95.25 90.29 79.85 69.12 60.12 50.39 

 (0.11) (0.07) (0.26) (0.32) (0.19) (1.26) (0.20) (0.78) 
         

MAR(3;0,6,6) 98.94 98.17 95.94 91.10 80.41 69.69 60.30 50.95 

 (0.06) (0.17) (0.99) (1.22) (0.51) (0.44) (0.50) (1.90) 
         

AR(4) 97.77 96.63 94.76 92.20 85.86 79.40 71.27 63.02 

 (1.24) (1.40) (0.25) (2.44) (7.33) (13.43) (18.78) (26.04) 
         

MA(3) 97.60 96.75 94.76 92.08 85.94 79.60 71.52 63.47 

 (1.41) (1.28) (0.25) (2.31) (7.43) (13.71) (19.20) (26.94) 
         

RW 98.09 96.67 94.64 92.08 85.94 80.50 72.45 63.84 

 (0.92) (1.36) (0.38) (2.31) (5.08) (15.00) (20.75) (27.68) 
         

AR(1)-GRACH(1,1) 98.21 97.20 94.80 89.80 81.63 73.43 65.79 57.05 

 (0.80) (0.82) (0.21) (0.22) (2.04) (4.90) (9.65) (14.10) 
         

GARCH(1,1)-t 99.11 98.21 95.33 88.99 78.46 69.20 60.46 51.89 

 (0.11) (0.21) (0.35) (1.12) (1.93) (1.14) (0.77) (3.78) 
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We generated the empirical coverages of one-sided 
(lower) prediction intervals for the return series. Note 
that the lower prediction intervals for return series are 
related to the concept of Value-at-Risk in finance 
literature. The results are recorded in Table 5. The 
performance of lower prediction intervals under the 
TMAR model is better than those under the MAR, AR, 
MA, RW and AR-GARCH models. On the other hand, 
the performance of TMAR-based lower prediction 
intervals is similar to that of GARCH-t-based lower 
prediction intervals. 

4. DISCUSSION AND CONCLUSION 

We have successfully applied the class of Student t-
mixture autoregressive models to a stock index data. 
This class of processes has the advantage of being able 
to capture time-varying means, variances and the shape 
of conditional distributions, which are stylized facts in 
many observed financial and economic time series. 
(Granger and Teräsvirta, 1993; Franses and van Dijk, 
2000; and Tsay, 2002). They can be employed to 
model a wide range of possible dynamics for the 
economic and finanical time series data. 

When the number of component in a TMAR model equals to one (i.e., q = 1), the model reduces to a linear 
AR process. Therefore, it would be useful to derive a test for q = 1 in a TMAR process. However, such test is 
somewhat non-standard as it corresponds to testing problems with nuisance parameters that do not exist 
under the null hypothesis (Davis, 1987). It is also interesting to examine the possibility of extending the 
TMAR process with GARCH errors. Research in these directions is in progress. 
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Table 5. Empirical coverage of the (1 – α)100% 
one sided (lower) prediction intervals for the 
Hong Kong Hang Seng Index  

Model 

(1 – α)100% 

99 98 95 

TMAR(3;0,6,6) 98.90 98.09 95.61 

 (0.10) (0.09) (0.64) 
    

MAR(3;0,6,6) 99.02 98.33 95.65 

 (0.02) (0.34) (0.68) 
    

AR(4) 98.29 97.60 95.94 

 (0.72) (0.41) (0.99) 
    

MA(3) 98.33 97.56 96.02 

 (0.68) (0.45) (1.07) 
    

RW 98.37 97.44 95.81 

 (0.64) (0.57) (0.85) 
    

AR(1)-GRACH(1,1) 98.54 97.68 94.88 

 (0.46) (0.33) (0.13) 
    

GARCH(1,1)-t 98.86 98.05 94.47 

 (0.14) (0.05) (0.55) 
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