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Abstract: In many economic models the utility function chosen is based on preconceived ideas
of the economic state. In order for a utility function to be fit to raw demand data an assumption
is made (amongst others) that a preference relation holds within a cycle of data points (Eberhard
et al. (2009)). In this paper we assume that errors have occurred in the data collection process
which have somewhat corrupted the quantity consumed for the particular commodity price. This
results in inconsistences in the preference relation and infeasibility of Afriat inequalities (Eberhard
et al. (2009)). We introduce a method that allows the data to shift in order for a Generalised
Axiom of Revealed Preference (GARP) to be satisfied by the data enabling a utility to be fitted.
This technique is described in section 1. The commonly used Cobb-Douglas utility is defined as

U(xi, ..., xL) =
L∏

i=1

xi
αi , (1)

where
∑L

i=1 αi = 1. This function represents the demand of commodities with respect to commod-
ity costs and household income. Here α represents the commodity share of good i in the total
household expenditure. Upon solving the utility maximisation problem the consumer spends the
entire household budget 〈xi, pi〉 = y, and the demand is given as

xi =
αiy

pi
. (2)

We run simulations with generated Cobb-Douglas type price-demand data to compare the fit of
an “Afriat” type utility. Errors are included in the Cobb-Douglas data to simulate the corruption
of GARP and to test the robustness of the error shifting least squares program. Calculating price
elasticities of demand is an important part of an economic model, as it quantifies the susceptibility
to change in quantity consumed for an associated change in commodity price. The Hicks-Slutsky
partition (Dixon et al. (1980)) describes the changes in demand given by a price change in com-
modity in conjunction with the associated change in demand given by the consumers change in
income. We fit a utility to simulated Cobb-Douglas demand to compare our calculated elastici-
ties (constrained to be consistent with the Hicks-Slutsky Partition) with the known Cobb-Douglas
elasticities. Cobb-Douglas price elasticity of demand is unitary as demonstrated by the demand
relation (2), therefore a 1% increase/decrease in price will lead to a 1% decrease/increase in de-
mand. Cross-price elasticity for this case is zero, since the demand is directly proportional to it’s
own price. We investigate and compare the elasticities generated by our method. An example of
commodities that are considered to be perfect substitutes is tea and coffee. Using the technique
described in section 2 we run a simulation of calculated elasticities with Cobb-Douglas simulated
data and also calculate elasticities of real price-quantity data from the ABS to determine the sub-
stitutability of tea-coffee.
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1 CONSUMER DEMAND AND THE REVEALED PREFERENCE

A preference relation xRy states that x is a revealed preference to y, (Houthakker, (1950)) and
more recently (Fostel et al. (2004)). We observe data xi ∈ XR(pi), that is xi is observed in the
demand relation at price i. In order for a preference relation to exist we should have for all cycles
of data of length m

X = {(xi, pi) | i = 1, . . . ,m} (with x1 = xm+1)

that all 〈pi+1, xi+1〉 − 〈pi+1, xi〉 ≥ 0 =⇒ 〈pi+1, xi+1〉 − 〈pi+1, xi〉 = 0.

We note that xi+1 ºR xi, xi+1 at price pi+1 is a revealed preference to xi since xi was in budget
but not chosen. i.e xi+1 ∈ X(pi+1), this can be used to sort the demands in terms of preference
levels ensuring that there are no contradictions.
When obtaining a finite sample of consumer demand data, the demand relation may have inconsis-
tencies due to the demographic of the data gathering process. The set of data samples of demand
xi and price pi for i ∈ I gives a finite data set {(xi, pi)}i∈I , I = {1 . . . k} of observed commodities
xi ∈ RL. We assume the observed data is of the form xi = x̄i + s̄i, where the correct data x̄i

is corrupted by an “unseen” error s̄i. Hence the data pairs do not satisfy the General Axiom of
Revealed Preferences (GARP)(Eberhard et al. (2009)).
We now introduce an error si so that the observed demand xi can vary in order for the data to
satisfy GARP. This leads to a quadratic least squares minimisation problem,

min
(φ,λ,s)

∑

i∈I

||si||2 +
∑

i∈I

λi

subject to
xi + si ≥ 0,

〈si, pi〉 = 0, (LS-QP)
λ ≥ 1,

φj − φi ≤ λi [〈pi, xj − xi〉+ 〈pi, sj − si〉] for i, j ∈ I.

Provided a feasible solution exists then the utility is given by

u− (x) := min
i∈I

{
φi + λip

T
i (x− xi)

}
(3)

The idea is to try to estimate the unknown errors s̄i using si. How well can (LS-QP) perform in
cases where the data contains large errors? Does (LS-QP) shift the si’s sufficiently to return to the
original demand x̄i? We answer these questions by performing a sensitivity analysis on the slack
values si by introducing errors to data that initially satisfied GARP. By randomly generating price
data of the form (x̄i + s̄i, pi) from a Cobb-Douglas utility we run (LS-QP) and compare the shifts
in the slacks si with the introduced errors s̄i. We solve (LS-QP) N = 30 times for a size m sample
to find an average error and grand error of the data respectively

an =
m∑

i=1

‖si − s̄i‖ for n = 1, . . . , N and err =
1
N

N∑
n=1

an (4)

of the slacks. The 95% confidence interval is displayed below.

Table 1: 95% Confidence Interval of Slack Errors

Sample Size

Error 5 10 30
0.001 (8.238700× 10−9, 1.43521× 10−7) (1.52842× 10−5, 4.89921× 10−5) (1.74478× 10−5, 4.14146× 10−5)
0.01 (−5.162467× 10−6, 1.22444× 10−5) (−1.59320× 10−3, 4.53031× 10−3) (−2.18439× 10−3, 5.58878× 10−3)
0.1 (−6.06453× 10−4, 1.11954× 10−3) (−2.78953× 10−1, 5.48663× 10−1) (−3.29819× 10−1, 6.71475× 10−1)

From Table 1 we can see that for small errors in the data s̄ = 0.001 (LS-QP) does not shift the
slacks si. We conjecture that GARP is already satisfied being insensitive to small changes. The
range of the confidence interval is significantly small although positive since the introduce error is
negligible. It is pleasing to note that (LS-QP) is working surprisingly well for smaller sample sizes
and correcting the larger introduced errors.
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Figure 1: Introduced errors compared with data shifting slacks

Figure 1 shows the error and shifted error clustered around zero, this demonstrates the ability of
the slack variables si to recognise the size of error s̄i in order to shift the corresponding data to
eliminate a large portion of the error.

2 PRICE ELASTICITIES OF DEMAND

The Hicks-Slutsky Partition describes the change in demand of a commodity with respect to the
change in the price. Price elasticity of demand is defined in two components. The first component
is often called the substitution (or compensated) effect. Here the consumer is able to enjoy the same
(fixed) level of utility on an unconstrained budget. The consumer is able to alter their demand for
commodities based on the changing prices which in turn will also alter their budget.
The second component is known as the income (uncompensated) effect. Here the consumer’s
budget can increase/decrease without an associated change in commodity prices. The consumer will
experience a different level of utility based on the change in quantity they are able to consume. This
is also referred to as uncompensated elasticity as a decrease in the consumers budget will restrict
the consumers demand. Mathematically, the Hicks-Slutsky Partition describes the relationship
between these elasticities.

∂xi

∂pj
=

(
∂xi

∂pj

)

dU=0

− xj
∂xi

∂y
, (5)

or equivalently
eij = ec

ij − αjEi. (6)

The share value αi = xipi

y , is the amount a consumer spends on a commodity in relation to
their entire budget, the first term in (5) is the change in demand given by a change in price
whilst holding the consumer to a fixed utility level. The second term in (5) is the uncompensated
(Engel) elasticity which is the consumers elasticity of change in demand with respect to a change
in household income. Since the utility has been fitted using parameters satisfying the “Afriat”
inequalities we obtain a polyhedral function thus allowing us to define the elasticities via a linear
program (LP).

2.1 Calculating Compensated Price Elasticity of Demand
We use the following approximation

ec
ij =

(
∂xi

∂pj

)

dU=0

≈ pj

xi

∆xi

∆pj
(7)

To calculate the associated change in demand we require the utility to remain fixed whilst the
commodity prices are allowed to vary. The optimisation problem can then be posed in the form,
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min〈p,X〉
subject to X ≥ 0 (8)

u(X) ≥ u(x0)

Here p and X denote the (L × 1) price and quantity vectors respectively. For P0 = (p∗1, . . . , p
∗
L)T

(the prices at equilibrium) it is expected that X0 = (x∗1, . . . , x
∗
L)T . As before the utility is defined

by (3),
Problem (8) can now be written as a parametric linear program,

min 〈p,X〉
subject to X ≥ 0

φ0 ≤ φi + λi〈p,X − xi〉 ∀ i = 1, . . . , k (LP(P))

We must solve the (LP (P0)) for X0 = (x∗1, · · · , x∗L)T and P0 = (p∗1, · · · , p∗L)T and check the
sensitivity of this solution X0 with respect to changes in the price P0 in the objective function. By
increasing/decreasing each commodity price in P0 we obtain a new optimal solution. This enables
us to determine an interval

(
P−0
P+

0

)
=

(
p∗−1 p∗−2 · · · p∗−L
p∗+1 p∗+2 · · · p∗+L

)
(9)

containing P0 in which the solution X0 remains optimal for (LP (P0)).
Begin by decreasing the lower bound by defining P−j = P−0 − εlj where 0 < ε ¿ 1, and lj is a
L × 1 vector of zeros with 1 in the jth row. The associated demand is calculated by solving for
(LP (P−j )) and compared with the optimal demand. The price change matrix can now be written
as,

(
P−j
P+

j

)
=

(
P−0 − ljε
P+

0 + ljε

)
(10)

The changes are made for each change in price pj calculate the change in xi demand and is recorded
as xij . Once the solution has moved from the optimal demand (given a acceptable tolerance),
the new optimal demand for the given price change is recorded and the process repeated for all
commodities. The demand change matrix for the lower price and upper price change is stored as:

X− =




x−11 x−12 · · · x−1L

x−21 x−22 · · · x−2L
...

...
. . .

...
x−L1 x−L2 · · · x−LL


X+ =




x+
11 x+

12 · · · x+
1L

x+
21 x+

22 · · · x+
2L

...
...

. . .
...

x+
L1 p+

L2 · · · x+
LL


 (11)

Therefore the change in demand and price can be written as

∆xi = X+
ij −X−

ij and ∆pi = P+
j − P−j (12)

respectively. The compensated price elasticity of demand can be defined as

ec
ij =

pj

xi

∆xi

∆pj
≈ P0j

X0i

X+
ij −X−

ij

P+
j − P−j

∀i = 1, . . . , L (13)

2.2 Calculating Uncompensated Price Elasticity of Demand (Engel Aggregation)
We use the approximation

Ei =
y

xi

∂xi

∂y
≈ y

xi

∆xi

∆y
(14)

The uncompensated elasticity allows the consumer to maximise their utility subject to a budget
constraint y whilst holding commodity prices fixed. The utility is still bounded below by the utility
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levels of the other commodity bundles. Here the consumer can move from each utility curve in
order to maximise their utility. In terms of our fitted utility u− the maximisation problem becomes,

max
(X,z)

z

subject to 〈X, p〉 ≤ y

X ≥ 0
z ≤ φi + λi〈p, X − xi〉 ∀ i = 1, . . . , k (LP(Y))

The optimal solution XE
0 = (x∗1, · · · , x∗L)T is found by solving (LP(Y)) for the given budget y. As

any change in budget will lead to a change in quantity demanded we can define the lower change
in budget as Y − = y − µ and solve (LP (Y −)). Similarly define Y + = y + µ and solve (LP (Y +)).
Where 0 < µ << 1.
The budget change matrix is then,

(
Y −

Y +

)
=

(
Y0 − µ
Y0 + µ

)
(15)

The demand change matrix for the associated decrease and increase in budget is stored as:

XE− =




x−1
x−2
...

xE−
L


 and X+ =




x+
1

x+
2
...

x+
L


 (16)

The Engel aggregation (uncompensated elasticity) (14) is now defined as

Ei ≈ Y

xi

XE+
i −XE−

i

Y + − Y − ∀i = 1, . . . , L (17)

The elasticity (5) is now represented as a linear change,

eij = ec
ij − αjEi ≈ P0j

X0i

X+
ij −X−

ij

P+
j − P−j

− αj
Y0

XE
0i

XE+
i −XE−

i

Y + − Y − (18)

3 APPLICATION TO CALCULATING ELASTICITIES OF A COBB-DOUGLAS UTIL-

ITY FUNCTION

To compare the calculated elasticities with the known results of a Cobb-Douglas utility, samples of
2 commodity bundles of size 30 were generated and used to calculate the elasticities as described in
section 2. It is expected that the optimal solution to the price minimisation problem (LP (P0)), and
utility maximisation problem (LP(Y)) are equal ie. (X0 = XE

0 ) for the optimal price sample P0

since both (LP (P0)), and (LP(Y)) maximise the consumers utility subject to the budget constraint.
As the demand calculated for a Cobb-Douglas type utility is xi = αY

pi
, an increase in the price

of commodity i will decrease the quantity demanded and similarly a price decrease will cause an
increase in quantity demanded.
The price and demand data is randomly generated in bundles of 10 as the data follows a normal
distribution. By generating smaller bundles the data clusters around the general equilibrium point
(xopt

1 , xopt
2 ) giving a smoother approximation around the clustered data and hence providing more

information around the optimal point. This can be seen in figure (2). The calculated elasticities
are:

e =
(

e11 e12

e21 e22

)
=

(−1.1297 0.099
−0.0225 −0.9746

)
(19)

The own-price elasticities represented by e11 and e22 being ≈ −1 agree with the data being of a
Cobb-Douglas type utility as the elasticity of −1 is unitary elastic as a 1% increase in the price
of commodity i will lead to a 1% decrease in demand of commodity i. Similarly the Cross-Price
elasticities e12 and e21 being close to zero show that the price change in commodity j does not
affect the demand of commodity i.
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Figure 2: Cobb-Douglas Utility curve and Afriat fit

4 APPLICATION TO CALCULATING ELASTICITIES OF TEA AND COFFEE

Using the Australian Bureau of Statistics (ABS) household expenditure data from tables (2) and
(3) respectively, the price and demand are now used as the input into (LS-QP) to fit a utility
function to the data. Now using the consumer data and the values calculated for φ, λ and s as an
input to (LP(P)) and (LP(Y)).

Table 2: Price and Quantity of 180g Bags of Tea for 1993,1999 and 2004

Tea Price Quantity
Sydney $1.85 $3.27 $3.75 0.31 0.20 0.19

Melbourne $1.83 $3.38 $3.45 0.33 0.19 0.20
Brisbane $1.64 $3.47 $3.52 0.30 0.16 0.19
Adelaide $1.59 $3.25 $3.44 0.31 0.15 0.18

Perth $1.78 $3.34 $3.37 0.35 0.20 0.21
Hobart $1.99 $3.99 $3.77 0.32 0.17 0.21
Darwin $1.94 $3.35 $3.70 0.22 0.19 0.14

Canberra $1.87 $3.33 $3.83 0.30 0.23 0.23

Table 3: Price and Quantity of 150g Jar of Coffee for 1993,1999 and 2004

Coffee Price Quantity
Sydney $3.74 $5.82 $5.97 0.25 0.23 0.20

Melbourne $5.03 $6.03 $5.72 0.21 0.26 0.25
Brisbane $4.07 $6.04 $5.53 0.22 0.20 0.22
Adelaide $5.12 $5.68 $5.42 0.20 0.27 0.21

Perth $4.69 $6.44 $6.47 0.19 0.17 0.16
Hobart $4.99 $6.93 $6.86 0.20 0.18 0.22
Darwin $5.56 $6.32 $5.80 0.14 0.22 0.23

Canberra $4.39 $5.70 $6.10 0.25 0.31 0.26

The price input the average of all tea and coffee prices over the three time periods. We normalise the
budget to 1 and take the normalised average prices as (p1, p2)1 = (1.55, 2.94). Upon solving (LP(P))
the optimal solution is given as

Xopt =
(

xopt
1

xopt
2

)
=

(
0.2294
0.2195

)
. (20)

The calculated elasticities of demand are,

e =
(

e11 e12

e21 e22

)
=

(
ec
11 − α1E1 ec

12 − α2E1

ec
21 − α1E2 ec

22 − α2E2

)
=

( −1.136 −0.0465
−0.01 −0.903

)
. (21)
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(
α1

α2

)
=

(
0.3547
0.6453

)
. (22)

The elasticities show that own-price elasticities are negative which agrees with the price demand
theory that a increase in own price will lead to a decrease in quantity demanded. The values of
the own price elasticities e11 = −1.136 and e22 = −0.903 demonstrate almost unitary elasticities.
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Figure 3: Demand of Tea and Coffee

Figure (3) demonstrates the substitutability of the two commodities. The Afriat Utility has fit
parallel lines to the data which are slightly skewed to the right. Tea and coffee are still considered
to be perfect substitutes with coffee favoured slightly more than tea as one would give up less coffee
to gain more tea.

5 CONCLUSION

The technique used to calculate the utility function based on consumer demand data has proven
to be robust even for small data samples. The calculation of elasticities has demonstrated the
substitutability of tea and coffee to be as expected. For the generated Cobb-Douglas data the
elasticities also agree with the expected elasticities. Provided that the data is well clustered
around the optimal solution then an appropriate change in demand is found, hence leading to
more accurately calculated elasticities.
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