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Abstract: Tourist movement is a complex process, but it provides very useful information for park 
managers and tourist operators. This paper aims to establish a sound methodology for modelling the spatial 
and temporal movement of tourists, with the objectives of understanding, predicting, controlling and 
optimising the decisions made by them as they go about choosing the attractions they want to visit..  

Tourist movements, in this paper, are modelled as discrete processes between specific tourist locations, 
which could be located some distance apart. A Semi-Markov process has a Markov chain and a renewal 
process embedded within its structure. Therefore, the Semi-Markov chain can be used to understand the 
interaction of tourists with attractions as a sequence of movements over time, rather than their interaction 
with individual attractions. 

 The following two assumptions, which underlie the Semi--Markov process, make it an especially ideal tool 
for modeling movements of tourists: 

• The probability that a tourist will visit a particular attraction depends only on the most recent 
attraction that was visited by that tourist. 

• The distribution of the time spent at each attraction is dependent on both that attraction and the next 
attraction that is visited.. 

One of the outcomes of this approach is a measure which assesses the attractiveness of particular tourist 
attractions based on spatial and temporal interactions between the attractions. Two assumptions, based on the 
assumptions of the Semi--Markov process, are derived for assessing attractiveness of tourist attractions 

• The more tourists visit an attraction, the more attractive it is. A transition probability matrix is 
developed for estimating the probability that a tourist will visit a particular attraction based on the 
first assumption.   

• The longer tourists stay at an attraction, the more attractive it is. A mean time transition matrix is 
calculated, based on the second assumption, to estimate the time spent at each attraction. 

The attractiveness of each attraction can then be calculated based on these two matrixes. A case study 
conducted at Phillip Island Nature Park, Victoria, Australia is used to validate the model.  The studies’ results 
prove that model is efficient. They  are also useful, in that knowing which attractions are the most popular, 
how long tourist will spend at any one site, and what the likely routes are that they will follow and how 
attractions associate with each other, can inform marketing decisions of park managers and tourist operators  
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1. INTRODUCTION 

Markov Chain models have been used in many disciplines for modelling the sequence of events related to 
each other by first-order dependency (Isaacson and Madsen 1976; Kemeny and Snell 1976; Stewart 1994; 
Cassandras and Lafortune 2008) . Xia et al. (2009) utilise Markov Chains to analyse the outcome and trend of 
events associated with spatio-temporal movement patterns. However, this method focuses on modeling 
movements of tourists spatially, not temporally, i.e. this method does not take the duration of each visit into 
consideration. In order to understand, predict, control and optimise decisions made by tourists regarding their 
decisions on which attractions to visit, this time information can be integrated into the Markov chain 
modeling process. To achieve these aims, we extend the Markov chain approach by modeling spatio--
temporal movements using a Semi--Markov 
process (Cinlar 1975b; Janssen and Manca 2006) 
. 

The following two assumptions, which underlie 
the Semi--Markov process, make it an especially 
ideal tool for modeling spatio—temporal 
movements of tourists: 

• The probability that a tourist will visit a 
particular attraction depends only on the 
most recent attraction that was visited 
by that tourist. 

• The distribution of the time spent in 
each attraction is dependent on both that 
attraction and the next attraction that is 
visited next. 

Thus, a Semi--Markov process has a Markov chain and a renewal process embedded within its structure, and 
as such, can be used to provide a wide variety of practical models useful in applications (See Figure 1). 

2. METHOD 

A random process is formally defined as a family of random variables { , }X t Tt ∈ defined on a given 

probability space and indexed by t. The set T is often used to represent the time sequence of the process and 
is usually discrete, i.e. {0,1, 2 }T =  or continuous, i.e. [0, )T = ∞ . The set of values of Xt as t ranges over T 

is the state space S of the random process, which could again either be discrete or continuous. If S is discrete, 
the process is referred to as a discrete random process; otherwise, the process is a continuous random 
process. In this paper, a random process is used to represent the spatio--temporal movement of tourists;  the 
temporal component is represented by t and the spatial component by the values of $ Xt for t T∈ . The state 
space S contains the destinations and transit route locations traversed by the tourists.   

A random process is referred to as a Markov process if it satisfies the following intrinsic property: given any 
fixed sequence of time points 0 1 2 nt t t t t< < < < < , positive integer n and values 0 1, , , ni i i , the 

following identity involving conditional probabilities holds: 

               Pr( | , , , , ) Pr( | )1 1 01 1 0
X j X i X i X i X i X j X it t n t t t t t nnn nn

= = = = = = = =−−
                                (1) 

If T is discrete, say {0,1, 2 }T =  , then the Markov process is known as a Markov chain (MC). The set of 

conditional probabilities 

                                                 Pr( | ) ( )1X j X i p nn ijn = = =+                                                                           (2) 

for ,i j S∈ and n = 1, 2, … is called the set of one-step transition probabilities of the MC. From the rules of 

probability, one-step transition probabilities satisfy 

(i) ( ) 0p nij ≥  for all pairs ,i j s∈ . 

(ii) ( ) 1p nj s ij =∈  

 

Figure 1.  Markov tourist movement application matrix 
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A Semi-Markov process (or a Markov Renewal process) generalizes a Markov process, in that the time spent 
in each state is dependent not only on that state but also on the next state it transitions to. Given the focus of 
this paper, we deal exclusively with a discrete Semi--Markov random process and assume that the cardinality 
of the set S is equal to a finite number N. Let 0 1 2, , , ,X X X  be the successive states in S visits by a random 

process starting in state 0X  and let 0 1 20 ,T T T= < < be the times of transitions into each of these states. 

The random process is a Semi-Markov process if it satisfies the following fundamental property (Cinlar 
1975b): 

                                                                                                                                                                         (3) 

 

for n = 0,1,2, … In words, given that we know the states that the process will be visiting and how long it 
spends in each of these states up to and including the nth epoch, the probability of where the process visits 
next, i.e. 1nX + , and the distribution of the time it will have moving from the most recent state to the next 

state, depends only on the most recent state nX . Note that for a Markov process, the distribution of 1n nT T+ −  

does not depend on 1nX +  and is also restricted to the class of exponential distributions determined by the 

infinitesimal rates of the process (Isaacson and Madsen, 1976).  

The probability on the right hand side of (4) is called the Semi--Markov kernel of the process and is denoted 
by 

                                                                                                                                                                          (4) 

Note that if we let t → ∞ ; then 

                                                      
( ) Pr( | )1Q X j X iij nn

Pij

∞ = = =+

=
                                                                      (5) 

and is just the one{step transition probabilities associated with the underlying Markov chain. 

Another relevant distribution associated with Semi-Markov processes is 

(6)                             

 which is the conditional distribution of the time spent in state nX before the next transition, given nX i=  and 

1nX j+ = . Using the product rule of probability, it follows that 

  

(7) 

hence 

 (8) 

if 0ijP > ; otherwise, we define  

(9) 

where                                                                                                 

 

Using (4), the joint distribution of sojourn times in states 0 1, , , nX X X respectively, given 

, , ,0 0 1 1X x X x X xn n= = = , can be computed using 

                       
Pr( , , , | , , , )1 0 1 2 1 2 1 1 0 0 1 1

( ) ( ) ( )1 20 1 1 2 1

T T t T T t T T t X x X x X xn n nn

F t F t F tx x x x x x nnn

− ≤ − ≤ − ≤ = = =+

=
−

 


                               (10) 

( )
( )

Q tij
F tij

Pij

=

Pr( , ) | , , , ; , , , )1 1 0 1 0 1

Pr( , | )1 1

j T T t X X X T T Tn n nn n

j T T t Xn nn n

Χ = − ≤+ +

= Χ = − ≤+ +

 

( ) Pr( | , )1 1F t T T t X j X iij n nn n= − ≤ = =+ +

Pr( , | ) ( )1 1j T T t X i Q tn n ijn nΧ = − ≤ = =+ +

Pr( , | )1 1

Pr( | , ) Pr( | )1 1 1

j T T t X in nn n

T T t X j X i X j X in n nn n n

Χ = − ≤ =+ +

= − ≤ = = = =+ + +

( ) ( )F t H xij =
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Based on (10), if S consists of a single state, then a Semi-Markov process also reduces to a renewal process.  

2.1. Mean Values and Attractiveness of a Site 

Let ijT  represent the time a tourist spends in state I, given that the process starts in i before moving to state j.   

To find the mean value of the random variable ijT  , we compute 

(11) 

where F’ij(t) is density function of ijT   and tij  is the expected travel time between destination I and j. Note 

that the first term on the right hand side of (11) is the expected time it takes for a tourist to move between 

state i and j. Therefore F’ij(t)  also includes the time spent in state i. Subtracting tij from this term gives the 

expected time spent in state i. tij can be estimated, since the travel times between various destinations are 

known. 

The attractiveness of state i, denoted by ( )A i  will be defined as 

(12) 

where N  is the total number of states. We remark that equation (12) is the expected duration of time spent in  
state i irrespective of which state the process moves to next;  hence, it is not an unreasonable measure of the 
attractiveness of that particular site.. 

2.2. Case study area and sampling techniques 

Phillip Island, located at the mouth of Westernport Bay, is 140 kilometres south-east of Melbourne. There are 
a large number of penguins, koalas, seals, and shearwaters living in the mangroves and wetlands, and on the 
sandy beaches and rugged rocky cliff faces. The 
major attractions are the Penguin Parade, the 
Koala Conservation Centre, Cowes, Churchill 
Island, Rhyll Inlet, Woolamai and the Nobbies 
(Figure 1), where visitors can experience 
wildlife in its natural environment (Phillip 
Island Nature Park 2001-02). 

 Tourists' daily movement data for the Phillip 
Island Nature Park were collected via a self-
administered questionnaire. The questionnaire 
was designed to address three different areas. 
The first section aimed to acquire socio-
demographic data or profiles of the tourists.  The second section aimed to collect information regarding travel 
mode, length of stay and with whom the tourists were travelling. The final section gathered information on 
tourist movement.  Here, tourists were asked to write down their approximate arrival time and duration of 
stay at each attraction visited for the entire day. Tourists were also asked to draw the route of travel to each 
attraction on a street map of Phillip Island.  Eight hundred questionnaires were distributed from the 6-8th of 
March 2004 and from 17-20th Jan 2005 at the Phillip Island Nature Park Information Centre, Churchill 
Island, Koala Conservation Centre and Penguin Parade. Penguin Parade was the major sample site. As park 
managers estimate that more than 90% of tourists visit these attractions, it is therefore unlikely that 
significant movement patterns were missed by the survey. Five hundred questionnaires were returned with 
456 entered into the database. The remaining 44 questionnaires were incomplete and discarded. 

2.3. Results 

3.2.1  Transition probability matrix 

In our case study, we considered the movement of tourists on Phillip Island between the nine attractions 
listed above. A stationary discrete Markov Chain is used to model the movements of the tourists between 
each attraction, from the moment they entered the park until they completed their visits.  The states of the 
chain are the nine attractions visited with an additional absorbing state labelled , "OUT", which signaled the 
completion of their tour. Movement of tourists on Phillip Island, therefore, is broken down into ninety one-

'
( ) ( )

0
E T tF t dt tij ij ij

∞
= −

( ) ( )
1

N
A i P E Tij ijj

=
=

Figure 2. Map of Phillip Island (Phillip Island Nature 
Park 2005) 
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step transitions in a transition 
probability matrix (See Table 1). 
The transition probability, for 
example from Cowes (F) to 
Penguin Parade (G), is 
calculated based on a conditional 
probability as follows:  

1. Count the number of 
movements that satisfy the 
profile F(n)  G(n + 1)∩  for n = 

1,2,…,m-1 where m is the 
maximum number of possible 
visits. For example, 
N(F(2)  G(3))∩  is the number 

of movements where tourists visit F as the second destination of their trip and then next move to G. The ‘n’ is 
the number of times FG pairs occur along the movement sequence. 

2. Sum these frequencies, i.e. 

m-1
N(F(n)  G(n + 1)) N(F(1)  G(2))+N(F(2)  G(3))+N(F(3)  G(4))+N(F(4)  G(5))+N(F(5)  G(6))

n=1

=71+61+22+10+2 =166

 ∩ = ∩ ∩ ∩ ∩ ∩
 

3. Divide the sum in (2) by the total number of one-step movement patterns from F to the other eight 

attractions iA , such s A, B and C etc  

m-1 8 m-1
N(F(n)  G(n + 1)) / ( N(F(n)  A (n + 1))) 166 / 2= 0.568in=1 1 n=1i

  ∩ ∩ =
=

 

3.2.2    Mean time transition matrix 

The mean time transition matrix shows the mean time spent at attraction I, given that the movement starts in i 
and then moves to attraction j.  The size of the mean time transition matrix is the same as the transition 
probability matrix (see Table 1) including nine attractions and one absorbing state labelled as "OUT".  

Two steps are used to derive the mean time transition matrix.  

• Identify time spent at attraction i for each pair of transitions.  

This step is to identify time spent at an attraction 
before moving onto the next attraction. For 
example, a  maximum six transitions are 
identified in the survey data, which means that 
tourists visit, at the most, seven attractions per 
day. Firstly, we list time spent in F attraction 
before moving to G in the initial transition. Here, 
F is the first destination to be visited on Phillip 
Island before moving to second destination G. 
Then, the same procedure is repeated to identify 
the duration at F before moving to G at the other 
five transition points. In total, one hundred and 
sixty five tourists travelled from F to G. 
Therefore, 165 durations are available for the 
next step in the analysis.  

• Fitting data to distribution function 

The Distribution Fitting Tool in the Matlab software package (The Mathworks, 2008) was used to fit duration 
data to different distribution functions. Twenty one distribution functions are available in Matlab. And we 
explored all these distribution functions to fit our data. Figure 2 illustrates possible good fit probability 
density functions (PDF) for time spent at attraction F before moving to G.  However, in order to choose the 
best fit distribution, more accurate criteria had to be adopted. Akaike Information criterion (AIC), which is 

Table 2. Transition Probability Matrix 
 A B C D E F G H J OUT 

A 0.000 0.000 0.000 0.200 0.000 0.200 0.200 0.400 0.000 0.000 

B 0.000 0.000 0.043 0.217 0.043 0.283 0.087 0.239 0.043 0.043 

C 0.000 0.103 0.000 0.333 0.026 0.308 0.103 0.026 0.000 0.103 

D 0.000 0.022 0.030 0.000 0.030 0.481 0.193 0.185 0.007 0.052 

E 0.000 0.077 0.000 0.115 0.000 0.577 0.192 0.038 0.000 0.000 

F 0.000 0.017 0.010 0.031 0.010 0.000 0.568 0.339 0.010 0.014 

G 0.000 0.002 0.002 0.000 0.002 0.022 0.000 0.026 0.000 0.946 

H 0.000 0.005 0.005 0.019 0.010 0.191 0.746 0.000 0.010 0.014 

J 0.000 0.133 0.000 0.000 0.133 0.200 0.400 0.133 0.000 0.000 

Figure 2. Probability density functions (PDF) for time 
spent at attraction F before moving to G 
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the loglikelihood penalized by the number of parameters was chosen to evaluate the goodness of fit of the 
distribution. 

AIC  =  2 (number of parameters in the model) - 2 Log Likelihood × ×  

The smallest value indicates the best fit (see Table 3). Therefore, the lognormal distribution function is the 
best fit distribution for time spent at attraction F before moving to G. 

The same procedure is repeated 90 times to identify the best fit distribution for each pair of transitions (see 
Table 4). Zero means no tourists in the survey data did this transition; e.g. from A to B,  because the  majority 
of tourists visiting Woolamai (B) are domestic visitors. Most of them are familiar with Phillip Island, and so,  
there is no need to visit the Information Centre. In Table 4, "?" indicates that there are not enough data to get 
a distribution fit.. 

 

After selecting the best fit distribution, mean time 
is calculated for each pair of transitions (See Table 
1). We have used the sample mean for the 
calculation when the best distribution can not be 
identified because of the small sample size. 

3.3.3 Attractiveness of an attraction 

The final step is to calculate the attractiveness of 
each attraction using equation (9) (See Table 5). 
Attractiveness of attraction is the sum of the 
product of transition probability and mean time. 
For example, attractiveness of attraction F (i = 6 
and N = 10) is calculated as: 

 

 

 

Table 4. Distribution fit 

  A B C D E F G H J OUT 

A 0 0 0 ? 0 ? ? ? 0 0 

B 0 Gamma Lognormal 
Birnbaum-
Saunders Gamma Inverse Gaussian Gamma Weibull Gamma Gamma 

C 0 ? 0 Nakagami ? Logistic ? ? 0 Inverse Gaussian

D 0 ? Inverse Gaussian 0 
Inverse 

Gaussian Lognormal Lognormal Weibull ? Log-Logistic 

E 0 ? 0 ? 0 Inverse Gaussian Birnbaum-Saunders Weibull 0 0 

F 0 ? ? Weibull ? 0 Lognormal Log-Logistic ? Weibull 

G 0 ? ? 0 ? Nakagami 0 Nakagami 0 Gamma 

H 0 ? ? Weibull ? Nakagami Log-Logistic 0 ? ? 

J 0 
Birnbaum-
Saunders 0 0 ? ? Weibull ? 0 0 

Table 3. AIC for each distribution function 

 FG Lognormal Log-logistic Birnbaum-
Saunders 

Inverse 
Gaussian 

Gamma Weibull Nakagami Exponential Normal  Lognormal 

Log likelihood -279.492 -280.331 -280.416 -281.78 -282 -286.1 -291.84 -300.5 -327 -279.492

Number of Parameters 2 2 2 2 2 2 2 1 2 2

AIC 562.984 564.662 564.832 567.562 568 576.1 587.676 603 657 562.984

 

10
(6) ( ) 0 0+0.017 1.75+0.01 2.5+ +0.014 1.767 = 2.2386 61

A P E Tj jj
= = × × × ×
=



Table 5. Mean time transition Matrix 
  A B C D E F G H J OUT 

A 0 0 0 0.2 0 0.5 0.3 0.35 0 0 

B 0 0 2.3 1.849 0.75 1.54 2 0.84 2 0.75 

C 0 2.5 0 1.289 2 2.07 2 4 0 2.5 

D 0 1 1.3 0 2.13 1.29 1.29 1.41 1 1.098 

E 0 1 0 1 0 0.92 1.29 1 0 0 

F 0 1.8 2.5 2.001 1.75 0 2.39 2.04 2.67 1.767 

G 0 4 1.5 0 0 1.36 0 0.89 0 2.533 

H 0 1.5 1 0.704 1.5 1.19 1.14 0 0.75 1.5 

J 0 1.3 0 0 1 0.6 1.42 0.75 0 0 
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Table 5 reveals attractiveness of pairs and attractions. Higher values indicate higher attractiveness; for 
example, $G$ is the most attractive attraction on Phillip Island. There is a higher probability that tourists will 
visit G and will stay there longer as well. In addition, the high value of pairs of attractions such as G-OUT, F-
H, F-G, H-G, and C-F indicates high association between the pairs. Therefore, park managers can combine 
these attractions when designing tour packages. 

3. CONCLUSION AND FUTURE WORK 

This paper applies a Semi-Markov process to measure the attractiveness of tourist attractions and the 
association of pairs of attractions, based on spatial and temporal interactions between the attractions. A case 
study conducted at Phillip Island Nature Park, Victoria, Australia is used to validate the model.   

Semi-Markov chains were used to break 
down movement processes into one-step 
transitions to identify how  pairs of 
attractions associate with each other 
spatially and temporally. For example, 
tourists who visit attraction F are most 
likely to visit attraction G afterwards. 
Similarly tourists spend a longer time at 
attraction F before moving to attraction G 
than they do when moving to the other 
attractions.  Tourists who spend a longer 
time at attraction F are intending to visit 
attraction G.  

In conclusion, one-step transitions of 
tourist movements can be examined to give 
useful information on the relationship 
between time and movement Previous research has focused on either space or time perspectives rather than 
space-time interactions, or concentrated on one single attraction instead of the association between a pair or a 
sequence of attractions (see Figure 1). This research fills a gap by investigating space and time interactions 
between pairs of attractions. A measure of the attractiveness of attractions is possible using Semi-Markov 
chains. In the future, further exploration of Markov methods may predict arrival times,  duration at 
attractions, or scheduling of movement between sites. 
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Table 5. Attractiveness of attractions 
  A B C D E F G H J OUT A(i) 

A 0 0 0 0.04 0 0.1 0.06 0.14 0 0 0.34

B 0 0 0.1 0.402 0.03 0.43 0.17 0.2 0.09 0.033 1.46

C 0 0.3 0 0.43 0.05 0.64 0.21 0.1 0 0.256 1.94

D 0 0 0 0 0.06 0.62 0.25 0.26 0.01 0.057 1.32

E 0 0.1 0 0.115 0 0.53 0.25 0.04 0 0 1.01

F 0 0 0 0.062 0.02 0 1.36 0.69 0.03 0.024 2.24

G 0 0 0 0 0 0.03 0 0.02 0 2.396 2.46

H 0 0 0 0.013 0.01 0.23 0.85 0 0.01 0.022 1.14

J 0 0.2 0 0 0.13 0.12 0.57 0.1 0 0 1.09
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