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Abstract

This paper studies a semi-parametric method for estimating the prevalence of a binary outcome using a
two-phase survey. The motivation for a two-phase survey is, due to time, money and ethical considerations,
it is impossible to carry out comprehensive evaluation on all subjects in a large random sample of the
population. Rather, a relatively inexpensive “screening test” is given to all subjects in the random sample
and only individuals more likely to have a positive outcome (cases) will be selected for a further “gold
standard” test to verify the outcome. Therefore, individuals with verified outcome form a non-random
sample from the population and care must be taken when the data are used for estimating the prevalence
of the outcome. This paper proposes a semi-parametric method for estimating the outcome prevalence. It
requires only an estimate of the probability of selection into the second phase, given the first phase data.
This feature is desirable as in most cases, the probability of selection into the second phase is under the
control of the researchers, and even when it is not, can be easily estimated given the data. The proposed
method uses the empirical likelihood approach (Owen, 1988), which yields consistent prevalence estimates
as long as the probability of selection into the second phase is correctly modeled.
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1. INTRODUCTION

Two-phase sampling is popular in population surveys where the prevalence of a rare outcome is to be
estimated (e.g., Beckett, Scherr and Evans, 1992). In such surveys, data are collected in two phases. In
the first phase, a random sample is selected from the population and for each individual in the sample, a
surrogate of the outcome is measured. Based on the value of the surrogate, a subset of the first phase sample
is then selected, on which the outcome is confirmed using a more extensive test. The data thus consist of
two parts. The first part is formed by a random sample of the surrogate in the population while the second
part is composed of a biased sample of the outcome. Therefore, the problem of estimating the prevalence
using data from a two-phase survey can be seen as that of a biased sampling problem with auxiliary data
(Vardi, 1982). Alternatively, it can also be regarded as a case-control study where the individuals with high
value of the surrogate are “‘cases” and those with low value of the surrogate are “controls”.

Since the second phase data is a biased sample selected from the first phase sample, prevalence estimation
must be adjusted for selection bias. Previous works in this problem have focused on semi-parametric methods.
These works fall primarily into two streams. In the first stream, the probability of selection into phase two is
estimated using data from both phases. Each observation in the second phase is then weighted (inversely) by
the selection probability estimate, in the spirit of the Horvitz-Thompson estimate (Horvitz and Thompson,
1952). Using this method, Robins and Rotnitzky (1995) proposed a class of estimators for the mean response
from a longitudinal study in the presence of missing response data. In the second stream, observations in
both phases are directly used for inference. The observations with missing outcome status will have their
statuses imputed using estimates. Roberts, Rao and Kumar (1987) used this method to study unemployment
rate data collected in a multi-level survey. Pepe, Reilly and Fleming (1994) considered this approach in
regression analyses with incomplete covariate information. The imputation method requires modeling of
the conditional probability of the outcome given the observed data. It may lead to biased results if the
probability of outcome is incorrectly modeled. On the other hand, methods based on weighting require
only modeling of the probability of selection into the second phase given the observed data, even though, in
small and moderate samples, they are known to be less effecient than imputation methods. Robinson (1988)
considered a hybrid of the weighting and the imputation methods. The methods in these works require the
estimation of both the conditional probability of selection into the second phase and of the outcome, given
the observed data. Comparisons of these method can be found in Clayton et al. (1998).

In this paper, a method is considered for prevalence estimation in two-phase samples. The method
requires an estimate of the probability of selection into the second phase, given the first phase data. But
since in most cases, the probability of selection into the second phase is under the control of the researchers,
and even when it is not, can be estimated consistently given the data, this criteria can easily be satisfied.
The proposed method is based on the empirical likelihood (EL) of Owen (1988).

2. METHOD AND MAIN RESULTS

Assume that N observations are randomly sampled from the population in the first phase. A variable
X is measured on each observation. In here, X is assumed to be a scalar. However, the method proposed
here generalizes easily to situations where X is a vector. Based on X, a second phase sampling is carried
out in which n observations are selected from the N observations. For each of the n observations selected in
the second phase, the outcome will be confirmed. Without loss of generality, let the outcome of interest be
a binary variable, D (=0 or 1). Then the data are

x1, ..., xn1 , D = 1; xn1+1, ..., xn1+n2 , D = 0; xn1+n2+1, ..., xN , D unknown;

where n1 + n2 = n. Let Π1 and Π2 denote, respectively, the sub-populations of “case” and “non case”
individuals. If the distribution of X in the subpopulations Π1 and Π2 are F1 and F2, respectively, then the
data consist of independent observations xi, i = 1, 2, ..., n1 from F1, xi, i = n1 + 1, 2, ..., n1 + n2 from F2

and xi, i = n1 + n2 + 1, ..., N from the mixture distribution F = πF1 + (1 − π)F2, where π represents the
proportion in the sub-population, Π1 and 1−π represents the proportion in Π2. Therefore, the problem can
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be treated as a case-control or choice-based sample with contaminated data (the contamination comes from
the last N − n observations, Imbens, 1992). The interest is to estimate π. Let S be a binary indicator that
denotes whether an observation has been selected into the second phase. Since the second phase selection
process depends only on the value of X, we can assume that, given X, the selection process is independent
of D. Therefore

P (S = 1|D,x) = P (S = 1|x) = w(x), (1)

where w is a known probability function if sampling is controlled by the researchers. Even if w is unknown
or the sampling scheme is very complicated, given x1, ..., xN and the knowledge of which observations have
been selected, w can be estimated. It can easily be shown that (1) is equivalent to the condition

P (D = 1|S, x) = P (D = 1|x) = u(x). (2)

The full likelihood based on the observed data is

n∏
i=1

[w(xi)πf1(xi)]Di [w(xi)(1− π)f2(xi)]1−Di

N∏
j=n+1

[(1− w(xj)){πf1(xj) + (1− π)f2(xj)]. (3)

When no assumptions are made about f1 and f2, it is not clear how to handle the last term of (3). Therefore,
instead of working with the full likelihood, the following semi-parametric empirical likelihood (EL) approach
will be adopted.

To motivate the method in this paper, consider (1). Note that if random sampling was performed to
obtain the second phase data, then, in large sample, one would expect

n∑
i=1

P (Si|xi) ∼=
N∑
i=1

P (Si|xi) ∼=
n

N
. (4)

However, because sampling into the second phase is non-random, the first term in the above expression will
no longer be the approximately the same as the second and third terms, even in large samples. In fact,

n∑
i=1

P (Si|xi)P (xi|i ∈ second phase) ∼=
N∑
i=1

P (Si|xi) ∼=
n

N
. (5)

Using the same argument, one would expect

n∑
i=1

P (Di|xi)P (xi|i ∈ second phase) ∼=
N∑
i=1

P (Di|xi) ∼= π. (6)

Therefore, if estimates of P (xi|i ∈ second phase), say pi, can be obtained, then the pi’s can be substituted
into (6) and obtain an estimate of the parameter of interest, π. However, this still requires an estimate
of P (Di|xi), which needs to be estimated using the (second phase) data by a parametric model such as a
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logistic regression model. But since E(Di|xi) = P (Di|xi), therefore,

n∑
i=1

DiP (xi|i ∈ second phase). (7)

can be used. The problem now lies in how to obtain pi, i = 1, ..., n. This problem will be approached using
the method of EL.

Assume P (si|xi) be estimated by ŵ(xi) = ŵi, i = 1, ..., N using data from the first and second phase.
Let p1, · · · , pn be non-negative weights allocated to the second phase sample xi, i = 1, ..., n. Then the second
phase sample has the following EL for the parameter π

L(π) = max
n∏
i=1

pi (8)

subject to

0 ≤ pi ≤ 1, i = 1, ..., n,
n∑
i=1

pi = 1,
n∑
i=1

piŵi =
n

N
,

n∑
i=1

piDi = π. (9)

Note the similarilities in the last constraint in (9) and (7). By introducing Lagrange multipliers and following
standard derivations in EL, the optimal pi’s for given π is

pi =
1
n

1
1 + λ(ŵi − n

N ) + γ(Di − π)
, for i = 1, · · · , n, (10)

where the Lagrange multipliers λ and γ, satisfy the following equations:

n∑
i=1

ŵi − n
N

1 + λ(ŵi − n
N ) + γ(Di − π)

= 0, (11)

n∑
i=1

Di − π
1 + λ(ŵi − n

N ) + γ(Di − π)
= 0. (12)

From (10), we have the negative log EL

`(π) = −2 log{L(π)} = 2
n∑
i=1

log{1 + λ(ŵi −
n

N
) + γ(Di − π)} − 2n log(n). (13)

Differentiating (13) with respect to π and using equations (11) and (12) lead to

n∑
i=1

γ

1 + λ(ŵi − n
N ) + γ(Di − π)

= 0. (14)
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From (14), it can be deduced that γ = 0. Therefore, (11) and (12) become

n∑
i=1

ŵi − n
N

1 + λ(ŵi − n
N )

= 0, (15)

n∑
i=1

Di − π
1 + λ(ŵi − n

N )
= 0. (16)

Let (π̂, λ̂) be the solutions to equations (15) and (16). Then, π̂ is the maximum EL estimate of π. Therefore,
pi, i = 1, ..., n and π̂ are obtained in one unify framework under EL. It can be shown that π̂ is asymptotically
normal.

The log EL ratio for π evaluated at π∗ is R(π∗) = −`(π∗) + `(π̂). It can be shown (proof upon request)
that R(π∗)

d→ χ2
1 as N → ∞, n/N → δ > 0. The large sample EL ratio result can be used to construct

confidence limits for π. In particular, let cα be the upper α-percentile of χ2
1 for α ∈ (0, 1). Then an α-level

confidence interval is CRα = {π|`(π) ≤ cα}.

3. SIMULATION RESULTS

This section reports the results of a simulation study that compares the finite sample properties of the
estimator, π̂ to some existing estimators. The näive complete case estimator (CC) uses only outcome data
from the second phase, i.e.,

π̂CC =
1
N

N∑
i=1

SiDi.

It is well known that π̂CC will give biased estimates unless the second phase data form a random sample
of the population. Given an estimtor ŵ(x) of P (S = 1|x) = w(x), the inverse probability estimator (IPW)
(Horvitz and Thompson, 1952) is given by

π̂IPW =

(
n∑
i=1

ŵ−1
i Si

)−1 n∑
i=1

ŵ−1
i Di.

Similar to π̂, π̂IPW gives unbiased estimates if w(x) is modeled correctly.

Three imputation estimators were considered. The first one imputes the outcome status of all subjects
by an estimate, û(x), of P (D = 1|x) = u(x) obtained using the second phase data. Hence it is sometimes
called the full imputation method (FI). It estimates π by

π̂FI =
1
N

N∑
i=1

ûi.

The second imputation estimator solves a score equation of π where the scores for the observations with
missing outcome status are imputed by the mean scores over the (unknown) outcome distribution. Pepe
et al. (1994) and Clayton et al. (1998) studied this mean score imputation (MSI) method using a binomial
score, which leads to:

π̂MSI =
1
N

N∑
i=1

(SiDi + (1− Si)ûi) ,
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where ûi is an estimate of the probability of outcome, given the observed data. Both π̂MSI and π̂FI are
consistent estimates of π if u(x) is correctly modeled, otherwise both will be biased. The third imputation
estimator requires modeling both u(x) and w(x). However, it has the “double robustness” property that
unbiased estimates of π can be obtained as long as one of u(x) or w(x) is modeled correctly. The doubly
robust (DR) estimator is given by

π̂DR =
1
N

N∑
i=1

[
SiDi

ŵi
−
(

1− Si
ŵi

)
ûi

]
.

Three values of π were used in the simulations: 0.2, 0.3, 0.4. In all simulations, the first phase sample
consisted of N = 500 observations. For the i-th individual, the value of xi was a random variable from
a N(0,0.5) distribution if the individual’s underlying outcome status was “control” and it was a random
variable from a N(1,0.5) distribution if the underlying outcome status was “case”. For the i-th observation
in the first phase, the probability of selection into the second phase sample was given by a logistic model

P (Si = 1|xi) = 1/{1 + exp(ζ − ζxi)}.

The i-th observation was selected into the second phase if P (Si = 1|xi) > Ui, where Ui followed a U(0,1)
distribution. In the simulations, the following values of ζ were used: 1.5, 2, 2.5 , 3. These values induced
proportions of data with missing outcome (i.e., data not selected into phase two) ranging from 0.648 to
0.822. In the simulations, u(x) and w(x) were modelled by separate logistic models with an intercept and a
linear term in X. These were the correct models under the set-up of the simulations. We chose not to study
situations where these models are mis-specified because in those situations, the conclusions depend critically
on the type and degree of mis-specification and cannot be easily generalized.

Table 1 summarizes the Monte-Carlo means and standard errors of the estimates of π using the different
methods. The results clearly show that π̂CC is biased in all senarios considered, which is to be expected.
The other methods are all approximately unbiased. When the proportion of data with missing outcome is
high, there is some slight bias in π̂IPW , even though in other simulations with a larger N (not shown here)
the bias disappeared. It is clear that compared to IPW, EL is more efficient in almost all senarios. The
advantage of EL over IPW is higher when the proportion of data with missing outcome is higher and when
the unknown π is higher. In fact, EL’s efficiency is comparable to the imputation methods, which require
a correct model of the probability of outcome. In this simulation study, the imputations are all based on a
correct model of the probability of outcome. Therefore, the results for EL is very promising.

4. CONCLUSION

This paper, we introduced a semi-parametric for estimating the prevalence using data from a two-phase
survey. Using simulations, we showed that the method gives more accurate estimates than the inverse
probability weighted estimator, which uses the same assumptions and set-up as the proposed method. We
also demonstrated that the method gives estimates that are competitive to the imputation methods, which
depends on correctly modelling the outcome given the observed data. This requirement is often harder to
satisfied that the one required by the proposed method (and of the inverse probability weighted method) of
a correct model for selection into second phase.
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Table 1. Mean (standard error) in estimating π. Based on 1000 simulations.

π = 0.2
proportion missing1 0.7360 0.7756 0.8035 0.8220

IPW 0.1997 (0.0264) 0.2014 (0.0312) 0.2024 (0.0407) 0.2120 (0.0551)
EL 0.1989 (0.0268) 0.1993 (0.0289) 0.1980 (0.0318) 0.1991 (0.0398)
CC 0.3762 (0.0438) 0.4466 (0.0475) 0.5083 (0.0509) 0.5654 (0.0536)
FI 0.1997 (0.0258) 0.2009 (0.0277) 0.1997 (0.0291) 0.2020 (0.0322)

MSI 0.1997 (0.0258) 0.2009 (0.0277) 0.1997 (0.0291) 0.2020 (0.0322)
DR 0.1995 (0.0259) 0.2003 (0.0281) 0.1991 (0.0308) 0.2004 (0.0370)

π = 0.3
proportion missing 0.7052 0.7413 0.7656 0.7826

IPW 0.3012 (0.0318) 0.3014 (0.0404) 0.3032 (0.0533) 0.3155 (0.0731)
EL 0.2998 (0.0297) 0.2991 (0.0332) 0.2975 (0.0369) 0.3009 (0.0471)
CC 0.5114 (0.0420) 0.5786 (0.0430) 0.6379 (0.0437) 0.6879 (0.0437)
FI 0.3005 (0.0290) 0.3002 (0.0316) 0.2987 (0.0331) 0.3008 (0.0376)

MSI 0.3005 (0.0290) 0.3002 (0.0316) 0.2987 (0.0331) 0.3008 (0.0376)
DR 0.3005 (0.0293) 0.3000 (0.0328) 0.2982 (0.0353) 0.3001 (0.0405)

π = 0.4
proportion missing 0.6758 0.7064 0.7278 0.7423

IPW 0.4025 (0.0336) 0.4003 (0.0475) 0.4043 (0.0633) 0.4187 (0.0871)
EL 0.4015 (0.0324) 0.3988 (0.0361) 0.3979 (0.0418) 0.4034 (0.0556)
CC 0.6190 (0.0384) 0.6825 (0.0368) 0.7343 (0.0370) 0.7760 (0.0353)
FI 0.4026 (0.0315) 0.3997 (0.0345) 0.3994 (0.0374) 0.4013 (0.0404)

MSI 0.4026 (0.0315) 0.3997 (0.0345) 0.3994 (0.0374) 0.4013 (0.0404)
DR 0.4024 (0.0316) 0.3995 (0.0352) 0.3979 (0.0394) 0.4010 (0.0461)

1: average proportion of data with missing outcome
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