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Abstract: Despite its shortcoming, Value-at-Risk (VaR) remains as one of the most important measures of risk 
for financial assets. Although it is used widely by regulatory authority in assessing risk of the financial markets, 
the robust construction of VaR forecasts remains a controversial issue. This paper proposes a new method to 
construct VaR forecasts based on Maximum Entropy Density, along with the Generalized Autoregressive 
Conditional Heteroskedasticity (GARCH) model of Bollerslev (1986).  
 
Using the result in Ling and McAleer (2003), the Quasi-Maximum Likelihood Estimator (QMLE) with the 
normal density for ARMA-GARCH model is consistent and asymptotically normal under mild assumptions. This 
implies that it is possible to obtain consistent estimates of the standardized residuals even when the underlying 
distribution of returns is non-normal. Given this, the distribution of the standardized residuals can then be 
approximated using Maximum Entropy Density (MED) which allows different characteristics of the distribution, 
such as excess kurtosis, to be accommodated. The one-day-ahead VaR forecasts can then be constructed by using 
the estimated ARMA-GARCH model and the MED.  
 
The practical usefulness of the proposed method is evaluated empirically against ARMA-GARCH and ARMA-
GJR models with different distributional assumptions using daily S&P 500 data. The empirical results show 
promising sign of the proposed method.  
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INTRODUCTION 
 

Value-at-Risk (VaR) has been used widely as a measure of risk for portfolio of financial assets and it is a 
requirement of the Basel Capital Accord (see Basel Committee on Banking Supervision (1988, 1995, 1996)). 
Essentially, VaR is a procedure designed to forecast the maximum expected negative return over a target horizon, 
given a statistical confidence limit (see for example, Jorion (2000) for an insightful discussion). However, robust 
construction of VaR forecast remains a controversial issue. Given the importance of VaR in risk management for 
finance and banking industries, it is important to develop a robust and accurate method to forecast VaR.  
 
There are two general approaches to forecast VaR, namely the parametric approach and nonparametric approach. 
The parametric approach generally requires an assumption on the probability distribution of the underlying 
return. Given the assumed distribution, the parameters in the distribution will then be estimated using historical 
data. Under the parametric approach, it is possible to allow the parameters in the distribution to change over time 
and therefore allows the shape and the location of the distribution to change over time. Two of the most popular 
models used in this approach are the Autoregressive-Moving Average Generalized Autoregressive Conditional 
Heteroskedasticity (ARMA-GARCH) model of Bollerslev (1986) and the ARMA-Glosten, Jagannathan and 
Runkle (ARMA-GJR) model of Glosten, Jagannathan and Runkle (1992). These two models provide 
convenience framework to allow the mean and the variance of the conditional distribution to change over time. 
Although these models are flexible in terms of accommodating the time-varying nature of the distribution, the 
distributional assumption is crucial in producing accurate forecast of VaR. However, it is difficult to identify the 
appropriate distribution based on existing data.   
 
This paper proposes a new method to forecast VaR with maximum entropy density (MED). Using the results in 
Ling and McAleer (2003), the parameters in an ARMA-GARCH model can be consistently estimated by Quasi-
Maximum Likelihood Estimator (QMLE) with normal density even when the underlying distribution of returns is 
non-normal. This implies that it is possible to obtain consistent estimates of the standardized residuals which can 
be used to approximate the true distribution using Maximum Entropy Density. This also allows other 
characteristics of the underlying distribution, such as asymmetry and excess kurtosis to be accommodated. Given 
the MED and the estimated ARMA-GARCH model, the one-day-ahead VaR forecasts can then be constructed.  
 
The practical usefulness of the proposed method will be evaluated empirically using daily data of S&P 500 from 
13 January 1989 to 14 January 2009 with a total of 5219 observations. In addition to the proposed method, VaR 
forecasts will also be constructed using ARMA-GARCH and ARMA-GJR models with different distributional 
assumptions. The results show promising sign for the proposed method.  
 
The paper is organized as follows: Section 2 provides a summary of VaR and its construction using the GARCH 
and GJR models, this is followed by a summary on Maximum Entropy Density in Section 3. Section 4 contains 
the empirical results and Section 5 contains some concluding remarks.  

 
 
1. PARAMETRIC VOLATILITY MODELS AND VALUE-AT-RISK 
 
This section provides a summary of VaR and its construction using parametric volatility models, such as the 
Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model of Bollerslev (1986) and the 
Glosten, Jagannathan and Runkle (GJR) model of  Glosten et al. (1992).  
 
The literature on modeling volatility has become increasingly popular in the last two decades. Since the 
introduction of the Autoregressive Conditional Heteroskedasticity (ARCH) model of Engle (1982), many 
different variations and extensions have been proposed in the literature aiming to capture the dynamic of the 
conditional second moments. Two of the simplest and most popular variations are the Generalized ARCH 
(GARCH) model of Bollerslev (1986) and the Glosten, Jagannathan and Runkle model of Glosten et al. (1992). 
The former extended the ARCH model by incorporating the past conditional variance and thus, allows long-run 
persisting behavior of shocks. The latter extended the GARCH model by incorporating asymmetric behavior of 
shocks, that is, the model allows future conditional variance to react differently between past positive and 
negative shocks.  
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Consider the following model for financial returns: 
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where 
tr  is the return at time t , L  denotes the lag operator so that 
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th denotes the conditional variance and the standardized 

residuals, 
tη , is a sequence of independently, identically distributed random variables with zero mean and unit 

variance.  
 
Obviously, the specification of 

th governs the dynamics of the conditional variance. One of the most popular 

specifications is the GARCH( , )p q model, which is defined to be 
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However, both positive and negative shocks have the same impact on the conditional variance, which is not 
realistic. Glosten et al. (1992) proposed a further extension to accommodate the asymmetric behavior, the GJR 
model is defined to be  
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The parameters in the models as defined in equations (2.1), (2.2) and (2.3) are typically estimated by the Quasi 
Maximum Likelihood Estimator with the normal density, which is defined as:  
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where the conditional variance, 

th , follows either the GARCH process or the GJR process as defined in equations 

(2.2) and (2.3), respectively. For the ARMA-GARCH model( ),..., ,..., , , ,..., , ,...,1 , 1 1 1r s p qθ φ φ θ θ ω α α β β=  is the 

1p q r s+ + + +  parameter vector and ( ),..., ,..., , , ,..., , ,..., , ,...,1 , 1 1 1 1 1r s p qθ φ φ θ θ ω α α β β γ γ=  is the 2 1p q r s+ + + +  parameter vector for 

the ARMA-GJR process. Note that equation (2.4) defines the QMLE with normal density. If tη  follows a normal 

distribution then equation (2.4) defines the Maximum Likelihood Estimator (MLE), otherwise it is a QMLE.  
 
The structural and statistical properties of GARCH and GJR models have been established. For the ARMA-
GARCH model as defined in equations (2.1) and (2.2), Ling and McAleer (2003) derived the structural and 
statistical properties for the GARCH(p,q) model. Under the existence of the second moment, namely 

11 1
p q

i ii iα β∑ ∑+ <= = , ˆ 0
pθ θ →  for ARMA-GARCH model, where 0θ denotes the true parameter vector (see Ling 

and McAleer (2003)). McAleer, Chan and Marinova (2007) provided the structural and statistical properties of 
GJR(1,1) model. The importance of these properties, especially in the case of ARMA-GARCH, is that the Quasi 
Maximum Likelihood Estimator (QMLE) for GARCH(p,q) is consistent and asymptotically normal when the 
second moment exists. This implies that it is possible to obtain consistent estimation of the parameters in the 
GARCH model without any distributional assumption. 
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Under the parametric approach, the VaR with the confidence level α at time t is defined to be 
 

 ˆVaR
t t tr hα κ= −      (2.5) 

where 
t̂r  is the forecast of return for time t , 

th is the conditional variance and κ  is a real number so that 

( ) 1tP η κ α≤ = − . Under model (2.1), both r̂t and ht can be easily obtained, but κ  depends on the distribution of 

the standardized residuals, tη , which is generally not available. Often the distribution of tη is assumed to be 

normal which is not adequate for financial returns given the excess kurtosis. Many studies have assumed more 
flexible distribution for tη . For example, Bollerslev (1987) proposed a Maximum Likelihood Estimator (MLE) 

for the GARCH model based on the t-distribution. The problem with assuming different distribution is that the 
statistical properties of QMLE are only known under the normal density. Therefore, the statistical properties of 
QMLE under the t-distribution or the Generalized Error Distribution (GED) are still unknown, which casts doubts 
on the validity of subsequence inferences. The results from Ling and McAleer (2003) offers an alternative, under 

the appropriate assumption, ˆ 0
Pθ θ → , and it is possible to show that the estimated standardized residuals will 

converge in distribution to the true standardized residuals, that is ˆ d
t tη η → . Therefore, it is possible to estimate 

the density of tη  using the estimated standardized residuals. The next section proposes to estimate the density of 

tη  using maximum entropy density. Once the distribution of tη  is obtained, κ  can then be computed.  

 
 

2. MAXIMUM ENTROPY DENSITY 
 

The concept of entropy was first introduced in Shannon (1948) and popularized by Jaynes (1957a, 1957b). 
Consider the Shannon’s Entropy for continuous random variable:  
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This entropy aims to measure the difference in the information content between the density, ( )tp η and the 

uniform distribution. The motivation of the Shannon’s entropy relies on the fact that the uniform distribution is 
used in the absence of any information and therefore, the distance between ( )tp η and the uniform distribution 

should provide a measure of information content in ( )tp η . This interpretation provides an insight into the 

estimation of ( )tp η , that is, ( )tp η  can be estimated by maximizing ( )H p  subject to a set of moment 

constraints. Mathematically,  
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The idea is that the information contained in the data is summarized by the first k sample moments. Therefore, 
the information content in the data is transferred into ( )ˆ tp η  by restricting its first k moments to be the same as 

that of the sample.  
 
The optimization problem as stated in equation (2.6) can be solved by defining the following Hamiltonian: 
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and by applying Calculus of Variations yields  
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where ( )exp 1
ikQ di t ti λη η= ∑∫ = . Equation (2.7) is known as the Maximum Entropy Density where the shape and the 

location of the distribution is governed by the parameters, 
1,..., kλ λ , which depends on the sample moments (see 

Chan (2009) for a detailed discussion). Given the distribution as defined in equation (2.7), κ  can be computed 
by solving  
 

     ( )ˆ 1 .t tp d
κ

η η α
−∞

= −∫      (2.8) 

The procedure of constructing the VaR forecast using MED can be summarized as follows:  
 
Step 1. Estimate the parameters in the ARMA-GARCH model as defined in equations (2.1) and (2.2) using the 

QMLE as defined in equation (2.4). 
Step 2. Given the parameter estimates, compute the estimated standardized residuals as  

      
ˆ

ˆ
ˆ

r rt t
t

ht
η −= . 

Step 3. Estimate the first k sample moments for 
t̂η .  

Step 4. Construct the MED based on the sample moments calculated in Step 3 using equation (2.7) (see Chan 
(2009) and Rockinger and Jondeau (2002) for efficient algorithms to calculate ,...,1 kλ λ  given the 

moments). 
Step 5. Calculate κ  by solving equation (2.8).  

Step 6. The one-day-ahead VaR forecast is then  ˆˆ 1 1r ht tκ−+ + . 

 
3. EMPIRICAL RESULTS 
 
The empirical usefulness of the proposed method will be evaluated empirically in this section using daily S&P 
500 data from 13 January 1989 to 14 January 2009 with a total of 5219 observations. In addition to the proposed 
method, the performance of VaR forecasts based on GARCH and GJR models with normal, Student-t and GED 
distributions will also be provided as a comparison to the proposed method.  
 
The first 4000 observations will be used to estimate the parameters in the GARCH and GJR models under 
differential distributional assumption. The one-day-ahead VaR forecast with 99% confidence level will then be 
constructed for the remaining sample using equation (2.5), with different values of κ  based on MED, normal, 
Student-t and GED distributions. The performance of each model can then be compared by calculating the 
percentage of violation relative to the total number of forecasts, namely, 1219.  
 
All the estimations in this paper were conducted using Scilab 4.1. In terms of model specification, all models 
estimated in this paper were assumed to follow an ARMA process in the conditional mean with conditional 
heteroskedastic errors following either GARCH or GJR process with 1r p q= = =  and 0.s =  The parameter 

estimates for both GARCH and GJR models under different distributional assumptions can be found in Table 1.  
 
As shown in Table 1, the parameter estimates under different distribution assumptions are very similar, with the 
exception of ARMA-GARCH model under the Student-t distribution where convergence could not be reached. 
Since estimates can not be obtained for this particular case, the evaluation on the VaR performance will not be 
conducted for the ARMA-GARCH model with the Student-t distribution.  
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GARCH GJR 
 

Normal Student-t* GED Normal Student-t GED 

0φ  0.048 
(3.631) 

0.060 
(5.404) 

0.002 
(15.000) 

0.030 
(3.023) 

0.043 
(3.763) 

0.029 
(2.760) 

1φ  0.012 
(0.705) 

-0.018 
(-3.357) 

0.007 
(17.450) 

0.023 
(1.429) 

0.003 
(0.275) 

0.003 
(2.742) 

ω  0.005 
(1.99) 

0.034 
(5.616) 

0.003 
(1.728) 

0.011 
(2.421) 

0.007 
(2.328) 

0.008 
(2.717) 

1α  
0.045 

(3.721) 
0.530 

(22.160) 
0.042 

(4.238) 
0.004 

(0.583) 
0.007 

(1.331) 
0.006 

(1.228) 

1β  
0.950 

(70.538) 
0.935 

(65.642) 
0.956 

(90.913) 
0.937 

(65.108) 
0.944 

(76.572) 
0.943 

(79.351) 

1γ     
0.094 

(4.427) 
0.085 

(3.901) 
0.087 

(4.211) 
Shape 

Parameters 
 2.116 

1.627 
(21.971) 

 
6.336 

(8.519) 
1.571 

(19.931) 
Second 
Moment 0.995  0.998 0.988 0.994 0.993 

* No convergence was achieved for the ARMA(1,0)-GARCH(1,1) under the Student-t distribution.  
** The robust t-ratios are in the parenthesis.  
 
Table 1 Parameter Estimates for ARMA-GARCH and ARMA-GJR under Different Distributional Assumptions 

 
 

GARCH GJR  
MED Normal GED Normal Student-t GED 

κ  -2.723 -2.326 -2.628 -2.326 -3.628 -2.605 
No of Violation 13 31 15 20 2 9 

Percentage 1.067% 2.543% 1.231% 1.641% 0.164% 0.738% 
 

Table 2 Out-of-Sample VaR Forecasts Performance 
 

Table 2 contains the calculated κ under each distribution as well as the out-of-sample performance of the VaR 
forecasts for each model with different distribution. The percentage of violation, that is, the ratio between the 
numbers of violations relative to the total number of forecasts should be close to the significance level, which is 
1%. As shown in Table 2, MED performed the best, follows by GARCH with GED then GJR with Normal 
distribution. Interestingly, both GJR with Student-t and GJR with GED produced extremely conservative VaR 
forecasts which explained their low percentages. Overall, the results support the importance of distribution in 
forecasting VaR through the calculation of κ  and that approximating the distribution of the standardized 
residuals using Maximum Entropy Density seemed to be a feasible method to improve VaR forecast.  
 
 
4. CONCLUSION 
 
This paper proposed a new method to forecast VaR threshold using Maximum Entropy Density (MED). Given 
the results in Ling and McAleer (2003), consistent estimates of the standardized residuals in an ARMA-GARCH 
model can be obtained by using the QMLE with normal density. The distribution of the standardized residuals 
can then be approximated using MED with the estimated standardized residuals. This method allows other 
characteristics of the underlying distribution, such as excess kurtosis, to be accommodated and thus produce a 
more accurate forecast for VaR thresholds. Empirical evidence suggested the proposed method is promising in 
make more accurate VaR forecasts.  
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