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Abstract: Economists have a long tradition of specifying their models in terms of axioms, or restrictions 
on data which must be obeyed for it to be consistent with a particular model. One common axiom is that a 
binary relation on some set Z must be acyclic.     

Acyclic, antisymmetric relations have the important property that they can be extended to complete linear 
orders. As such, we can interpret such relations as being an incomplete observation of some consistent 
ordering on Z. The most famous use of this result is Strong Axiom of Revealed Preference (SARP), which 
shows that a set of choice data can be considered consistent with the maximization of some underlying 
preference ordering if and only if the generated revealed preference relation is acyclic. Caplin and Dean 
[2008] provide an example in which the acyclic property is central to characterising a model of search and 
choice. 

One problem with the axiomatic method of characterizing a model is that it provides only a very stark 
measure of whether a data set is consistent with a particular model: data either does or does not violate the 
stated axioms. There is no concept of whether a data set is `close' to satisfying an axiom set. Recognising this 
problem, several authors have proposed measures of how `far away' a data set is from satisfying a set of 
axioms (see Afriat [1972], Varian [1991], and Houtman and Maks [1985]). 

The Houtman and Maks measure is based on finding the largest subset of observations which satisfy the 
axiomatic system. While this measure is not without its problems (see Choi et al. [2006] for a discussion), it 
has the advantage of being applicable to wide variety of data sets and axiomatic systems. In contrast, the 
Afriat and Varian measures are only applicable to data obtained by observing choices derived from different 
budget sets. 

One possible reason that the Houtman and Maks measure has not been widely adopted is that it can be 
extremely computationally intensive (see Choi et al. [2007] and Fisman et al. [2007] for examples in which 
computational constraints have been binding). The innovation in this paper is to show that the problem of 
finding the maximal acyclic subset can be reduced to a well-studied problem within the computer sciences 
and operations research: the Minimum Set Covering Problem (MSCP). While MSCP is NP-hard in the strong 
sense, there are a wide variety of algorithms built to solve this problem (see Caprara, Toth, and Fischetti 
[2000]), which can be used to find the maximal acyclic set quickly and exactly for reasonably-sized data sets. 
This paper describes some of these algorithms, and a companion website (www.danielmartin.com) provides 
code which adapts them to the Houtman-Maks measure. Furthermore, we demonstrate that with this 
approach, the measure can be calculated in under a second for cases that were previously insoluble. This 
result opens up the possibility that the Houtman-Maks measure can be developed into a more formal 
statistical test of axiomatic consistency.  
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1. INTRODUCTION 

Economists have a long tradition of specifying their models in terms of axioms, or restrictions on data which 
must be obeyed for it to be consistent with a particular model. One common axiom is that a binary relation on 
some set Z must be acyclic.     

Acyclic, antisymmetric relations have the important property that they can be extended to complete linear 
orders. As such, we can interpret such relations as being an incomplete observation of some consistent 
ordering on Z. The most famous use of this result is Strong Axiom of Revealed Preference (SARP), which 
shows that a set of choice data can be considered consistent with the maximization of some underlying 
preference ordering if and only if the generated revealed preference relation is acyclic. Caplin and Dean 
[2008] provide an example in which the acyclic property is central to characterising a model of search and 
choice. 

One problem with the axiomatic method of characterizing a model is that it provides only a very stark 
measure of whether a data set is consistent with a particular model: data either does or does not violate the 
stated axioms. There is no concept of whether a data set is `close' to satisfying an axiom set. Recognising this 
problem, several authors have proposed measures of how `far away' a data set is from satisfying a set of 
axioms (see Afriat [1972], Varian [1991], and Houtman and Maks [1985]). 

The Houtman and Maks measure is based on finding the largest subset of observations which satisfy the 
axiomatic system. While this measure is not without its problems (see Choi et al. [2006] for a discussion), it 
has the advantage of being applicable to wide variety of data sets and axiomatic systems. In contrast, the 
Afriat and Varian measures are only applicable to data obtained by observing choices derived from different 
budget sets. 

One possible reason that the Houtman and Maks measure has not been widely adopted is that it can be 
extremely computationally intensive (see Choi et al. [2007] and Fisman et al. [2007] for examples in which 
computational constraints have been binding). The innovation in this paper is to show that the problem of 
finding the maximal acyclic subset can be reduced to a well-studied problem within the computer sciences 
and operations research: the Minimum Set Covering Problem (MSCP). While MSCP is NP-hard in the strong 
sense, there are a wide variety of algorithms built to solve this problem (see Caprara, Toth, and Fischetti 
[2000]), which can be used to find the maximal acyclic set quickly and exactly for reasonably-sized data sets. 
This paper describes some of these algorithms, and a companion website (www.danielmartin.com) provides 
code which adapts them to the Houtman-Maks measure. Furthermore, we demonstrate that with this 
approach, the measure can be calculated in under a second for cases that were previously insoluble. This 
result opens up the possibility that the Houtman-Maks measure can be developed into a more formal 
statistical test of axiomatic consistency.  

2. METHOD 

Using this result to calculate the HM Index requires two algorithmic components. First, to fully specify the 
mapping F on C, we need an algorithm that identifies the set of all cycles C and the observations x∈X that 
break each cycle c∈C. One option is Johnson's Algorithm, a computationally efficient graph theory 
algorithm (see Johnson [1975]). A graph G is composed of nodes N and edges E, and preferences can be 
represented as a directed graph by creating a node for object (E=Z) and placing a directed edge between 
nodes when one object is preferred to another (e.g., e₁=(z₁,z₂) if z₁≻z₂). Johnson's Algorithm is based on 
`depth-first' search, a standard approach to finding cycles, which looks at the objects preferred to an initial 
object, then looks for the objects that are preferred to the first of those preferred objects and so on until a 
cycle is found or the process terminates. At that point, the algorithm goes back one level and proceeds from 
the second preferred object until all possibilities are exhausted. 

To gain efficiency, Johnson adds a blocking function to prevent redundant searching on the tree, which gives 
it a computation time upper bound of O((n+e)(c+1)), where n is the number of nodes, e is the number of 
edges and c is the number of cycles. We add additional efficiency by modifying Johnson's Algorithm to only 
look at those cycles without subcycles. 

Second, we need an algorithm to solve the Minimum Set Covering Problem (MCSP), which is NP-hard. 
However, MSCP has been studied exhaustively because it can be applied to many real-world situations, such 
as train scheduling and city planning. As a result, algorithms have been developed to solve or approximate 
solutions to MSCP quickly for larger and larger data sets. Branch and bound algorithms find an exact 
solution by iteratively `relaxing' the integer programming problem so that linear programming techniques can 
be used to create bounds on the problem. These algorithms have been integrated into standard Integer 
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Programming (IP) software packages, including commercial solvers (e.g., CPLEX) and non-commercial 
solvers (e.g., SCIP and MINTO), which outperform stand-alone algorithms and tend to work quickly for 
most data sets (see Caprara, Toth, and Fischetti [2000]). In the following benchmark comparison, we use the 
bintprog command in the MATLAB Optimization Toolbox to solve MSCP.  

3. BENCHMARK 

To benchmark our approach, we use the data and analytical computer program from Choi et al [2006]. In this 
paper, 93 subjects allocate tokens between account x and account y using a novel graphical interface. Over 
50 rounds, subjects face randomly selected budget lines, with a constant, normalized wealth level. The state 
of the world is uncertain, and in one state of the world, each x token pays $.50 and each y token pays nothing, 
and in the other state of the world, the reverse is true. We say a bundle (x₁,y₁) is revealed preferred to a 
bundle (x₂,y₂) if both are available in the budget set and (x₁,y₁) is selected instead of (x₂,y₂). 

Choi et al [2006] report that finding the HM Index with their approach is infeasible for subjects with data that 
is `far away' from acyclicality. To see why calculating the HM Index can be difficult in such cases, imagine a 
data set that has 50 observations, where the maximal acyclic subset contains just 41 observations. Before you 
can find the maximal acyclic subset, you must first determine that all subsets of size 49 contain a cycle, then 
all subsets of 48 observations and so on until you have checked all possible subsets of 42 observations, which 
involves over 655,000,000 checks. 

To calculate the HM Index more quickly, the authors first partition their choice data using the strongly 
connected components of the corresponding graph, and then look for the largest acyclic subset of each 
component. In addition to reducing computation time, partitioning sets allows the authors to calculate a 
lower-bound on the size of the maximal acyclic subset for each subject. 

Even though most subjects were close to being perfect rational, Choi et al [2006] were unable to produce an 
exact HM Index score for 5% (6 of 93) of subjects, who are listed in Table 1. Our algorithmic approach was 
able to solve even the most difficult case in under a quarter of a second. Additionally, the benchmark lower 
bound was often significantly smaller than the size of the largest acyclic set. The program files for our 
approach are available at www.danielmartin.com. 

 

The computational difficulty in calculating the HM Index also meant that Choi et al. [2006] were unable to 
benchmark their results against random choices. Bronars [1987] discusses the role that random choice can 
play in determining the power of a measure. To apply such an idea to the HM Index, one must be able to 
calculate the measure for random choices, which can be very far from rationality. The improved efficiency of 
our approach allows for such benchmarking. Figure 1 shows the distribution of HM Index scores for the 
subjects' choice data (reproduced from Choi et al. [2006]) and for hypothetical subjects selecting baskets of 
goods at random from the budget line. This simulation was run for 25,000 subjects making uniformly 
distributed choices on randomly generated budget lines in keeping with the experimental design. 

  Benchmark Approach New Approach 

ID HM Index (Lower Bound) Run Time (Lower Bound) HM Index (Exact) Run Time (Exact) 

211 34 > 30 seconds 35 0.1156 secs 

324 31 > 30 seconds 43 0.0475 secs 

325 34 > 30 seconds 41 0.0709 secs 

406 30 > 30 seconds 40 0.0451 secs 

504 33 > 30 seconds 45 0.0401 secs 

608 30 > 30 seconds 40 0.0451 secs 
 

Table 1. Benchmarking results 
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4. DISCUSSION AND CONCLUSIONS 

This paper provides a new tool to help answer the question: `How close is a set of choice data to rationality?' 
While not perfect, the HM Index is a flexible and powerful way to answer this question, but has largely been 
abandoned on the basis of its computational difficulty. By showing that the problem of finding the HM Index 
can be reduced to the Minimum Set Covering Problem, we have removed these constraints for many data 
sets. We can now solve problems in fractions of a second that were previously insoluble in any reasonable 
length of time. By doing so, we have opened the door to more sophisticated use of the HM Index, including 
simulations to benchmark models of choice. 
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Figure 1. Comparison with random choice data 
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