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Abstract: Both Royal Australian Air Force (RAAF) and Border Protection Command (BPC) aircraft fly 
maritime surveillance missions for the Australian Government on a regular basis.  These missions involve 
searching particular areas of interest (AIs) for illegal fishing or people smuggling activities.  In this work a 
square AI is considered, with an aircraft tasked to search for ships using its sensors (e.g., radar, electro-
optical).  Waypoints (points that must be visited) are included in the AI to ensure that the entire AI is 
covered.  The aim for a particular search is to detect and classify as many ships as possible, while doing so in 
the shortest time.  Depending on the ship density, the aircraft may not have time to search the entire AI. 

In this paper an augmentation of the traditional Travelling Salesman Problem (TSP) is considered, where the 
ships (cities) move with random velocities (dynamic TSP), have different start and end points (open TSP) 
and there is incomplete a priori knowledge of the problem space (on-line TSP), making this problem much 
more challenging. 

Earlier work (Marlow et al, 2007) considered a “baseline” case of an S-shaped search pattern and a default 
heading (the route flown when there are no ships currently detected) direct to the next waypoint.  This paper 
considers three extensions with an aim to increase the level of ship classifications: these are 1) alternative 
initial flight paths, 2) alternative default headings and 3) including “ghost ships” in the search.   

The principle behind the S-shaped pattern is that the aircraft will cover the entire AI with its sensors, giving 
aircrew the best chance of detecting all ships in the AI.  This paper considers alternative spiral waypoint 
patterns, both an “inspiral” (from one corner of the AI, spiraling towards the centre) and an “outspiral” (the 
reverse).  These approaches are theoretically more likely to detect ships that enter the AI during the mission. 

The direct-to-waypoint default heading will minimise the travel time, but it also may potentially result in the 
aircraft not covering the entire AI with its sensors, particularly if it has already been diverted significantly 
from the “wayline” (the direct line between waypoints).  In this work, a perpendicular return to the wayline is 
considered, which increases the distance travelled but is also likely to increase the probability of detecting 
more ships.  A third option is also considered in which the aircraft continually aims for the midpoint on the 
wayline of the perpendicular intercept point and the waypoint. 

The object of ghost ships is to direct the aircraft to fly to areas of the AI that it may not otherwise visit.  This 
may particularly be the case in low-density environments where the aircraft has to substantially divert from 
the wayline to classify ships and, in returning, inadequately cover other areas where ships may be present.  
Ghost ships remain in the current tour until they are “detected”, whereupon they are removed. 

Results suggest that, at lower densities, the perpendicular default heading and including ghost ships provide 
an overall improvement in classifications of the order of a few percentage points, which in real terms 
translates to an extra 1-2 ships on average.  Significantly it also translates to an increase in the percentage of 
cases where 100% classifications are achieved.  These improvements generally come at a cost of increased 
distance travelled by the aircraft and thus greater fuel consumption.  In the case of ghost ships, there is an 
additional cost in computational time due to the requirement to include them in the tour.  Beyond the critical 
ship density (where classifications cannot physically reach 100%), these variations offer no real advantage 
and in some cases are counter-productive, so the baseline pattern is more appropriate in these circumstances.   
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1. INTRODUCTION 

1.1. Problem description 

Both Royal Australian Air Force (RAAF) and Border Protection Command (BPC) aircraft fly maritime 
surveillance missions for the Australian Government on a regular basis.  These aircraft include AP-3C Orion 
and de Havilland Dash 8 fixed-wing aircraft and Eurocopter Squirrel rotary-wing aircraft.  Maritime 
surveillance is a vital role for the Australian Government in seeking to defend Australia’s northern 
approaches from criminal activities such as illegal fishing or people smuggling. 

The problem is illustrated in Figure 1.  Aircrew are tasked with searching a particular Area of Interest (AI).  
In some cases, the mission aim may be to search for a single target; in other cases, the aim may be to classify 
every ship in the area.  The size of the area depends on the type of aircraft.  A fixed-wing aircraft can travel 
faster, carries more fuel and has better sensors than a rotary-wing aircraft, so its allocated AI will generally 
be larger.  Here a simple square AI is shown, although AIs can be a more general region.  For the S-shaped 
search pattern shown, the waypoints (points that must be visited) are determined in such a way that if the 
aircraft flies directly between each waypoint (along the “wayline”) without diverting from that path, the 
aircraft’s sensors will cover the entire AI in the process.  
The AI can be divided into segments, the sizes of which 
correspond to the area covered by the aircraft’s sensors if it 
follows the wayline between two sequential waypoints. 

When an aircraft detects a ship with its sensors (varying 
from long-range radars to visual), the aircrew will divert the 
aircraft from the current flight path to classify it.  Both 
detection and classification range vary with sensor type and 
are influenced by environmental conditions, such as cloud 
or sea state.  The aim in this particular problem is to 
classify as many ships as possible before completing the 
search of the AI or before the aircraft reaches its maximum 
flight time (e.g., fuel limit).  Having accomplished this, the 
secondary aim is to perform this as efficiently as possible to 
minimise fuel usage – i.e., in the shortest possible time.   

If the ships are treated as stationary, and the aircraft starts 
and finishes at the same point and has an infinite detection 
range, then this problem is a version of the Travelling 
Salesman Problem (TSP).  Given the nature of this 
particular problem – i.e., maximising ship classifications as 
the primary objective, with minimising tour length as the 
secondary objective or as a constraint when considering the 
maximum flight time – this work can be sub-classified as an orienteering problem (Feillet et al, 2005) in the 
TSP domain.  However, the added difficulties of moving ships (dynamic TSP), detecting ships as the aircraft 
flies (on-line TSP) and different start and end points (open TSP) make this problem more challenging. 

1.2. Previous work 

The maritime surveillance modelling literature specific to this problem is sparse.  Many papers exist that 
study elements of the maritime surveillance modelling problem, but other than that undertaken by the authors 
and their associates, only one (Grob, 2006) is currently published that directly relates to the problem 
considered here.  Other aspects of the problem have been addressed, such as the best way to fuse information 
from different sensors to form maritime tracks (St-Hilaire et al, 2008) and how best to search a sequence of 
sub-regions in order to maximise the probability of detection of a single target (Ng and Ghanmi, 2002).  One 
paper (John et al, 2001) looks at determining the shortest surveillance path in a single area of interest, with 
various scan and flight options available to minimise the distance travelled.  Another paper (Ng and Sancho, 
2007) examines an aircraft surveying multiple AIs in a single mission.  An aircraft searches for a single target 
of interest in each area, with the entry and exit points to each area varied in order to minimise the overall 
distance travelled.  These papers generally apply solution methods that draw on the abundant TSP literature. 

A previous MODSIM paper (Marlow et al, 2007) on maritime surveillance modelling compared the simple 
Nearest Neighbour search with variations on the 2-opt method (Croes, 1958) for a range of ship speeds and 
ship densities.  The 2-opt methods were found to be superior in maximising ship classifications.  Other work 

Figure 1. The maritime surveillance scenario. 
An aircraft moves through the AI following 
the direct line (wayline) between waypoints 

(green circles).  As ships (red triangles) come 
within detection range of its sensors (dashed 

line), it diverts to classify them.
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(Mercer et al, 2008) studied the impact of varying detection and classification ranges on ship classifications 
and the impact of aircraft turning circle radius on tour length.  Another paper (Looker, 2008) has developed a 
robust means of determining the intercept point (and if one exists) when incorporating the turning circle. 

2. FLIGHT PATH OPTIONS 

This section describes three variations from previous work (Marlow et al, 2007) tested in the current paper. 

2.1. Waypoint position 

Waypoint positions are chosen based on the size of the AI and 
the sensor range of the aircraft, so as to maximise the 
probability that the entire AI is searched during the mission.  
Given that the AI is simply an allocated sub-set of the ocean, 
ships can be moving in and out of the AI while the aircraft is on 
task.  The current approach (an S-shaped pattern) progresses 
slowly “upwards” through the AI in a way that resembles 
conventional barrier patrols (Wagner et al, 1999).  Given the 
size of the AI, it is possible that ships at the “top” of the AI may 
escape before the aircraft is able to detect and classify them.  
Alternatively, ships may enter from the “bottom” of the AI once 
the aircraft has moved towards the top.  

This paper tests some alternative initial waypoint positions 
involving spiral patterns, both an “inwards” spiral and an 
“outwards” spiral, as illustrated in Figure 2.  The premise for the inwards spiral is to effectively “bound” the 
AI initially and “trap” the ships within it, giving less chance for a ship that starts the mission within the AI to 
escape and be undetected or unclassified.  The outwards spiral is the reverse, with a high probability of 
classifying all targets near the centre of the AI, and a good probability of classifying targets that enter the AI 
as the mission progresses.   

2.2. Default heading 

When an aircraft commences its 
mission, if no ships are immediately 
detected, it heads along the wayline to 
the next waypoint.  When it detects a 
ship, it diverts from the wayline to 
classify it.  Once classified, if the 
aircraft again does not detect any 
ships, the aircraft’s default heading is 
directly to the next waypoint.   

This default heading will reduce the 
travel time of the aircraft, but may also 
reduce classifications.  An aircraft 
heading directly to the next waypoint 
could miss a significant section of the 
AI which may contain undetected ships.  This may be a particular issue in low-density environments. In a 
higher-density environment, aircrew will divert the aircraft more regularly, thus expecting more detections 
and a greater coverage area. 

In this work, two other options are considered for this default heading:   

• A perpendicular return.  In this instance, the aircraft heads to the nearest direct intercept point with the 
wayline.  This will increase tour length, but also the likelihood that more ships will be detected. 

• A “midway” return.  As the name suggests, this heading is a compromise between the direct-to-waypoint 
heading used thus far and the perpendicular return described above.   

These options are shown in Figure 3.  Note that including the aircraft’s turning circle may adversely affect 
tour length depending on aircraft type (Mercer et al, 2008).  The greatest effect would be in the perpendicular 
case: an aircraft heading away from a wayline to classify a ship would require an obtuse-angle turn to return 
perpendicularly to the wayline. 

 

1
2 3

Figure 3. Examples of various default heading options when no 
contacts are visible:  1) direct to the next waypoint; 2) 

perpendicular to the wayline; and 3) to the midpoint of 1) and 2), 
which is constantly updated as the aircraft moves. 

Figure 2. A inwards-spiral pattern 
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2.3. Ghost ships 

In a previous paper (Marlow et al, 2007), the 
percentage of ships classified was found to increase 
with ship density up to a certain critical point and 
then decrease beyond that, due to the aircraft having 
too many ships to classify in the available time.  
Before this point, ship classifications should be close 
to 100%.  In these instances, the aircraft has enough 
time to sufficiently cover the area and divert from the 
wayline to classify the ships it detects.  This is 
evident by the fact that the mission time is always 
below the maximum time available, meaning that the 
aircraft finishes sweeping the area with time to spare. 

One reason that classifications are below 100% in 
these circumstances is that in diverting the aircraft 
from the wayline to classify a detected ship, the 
aircrew may miss other parts of the AI that contain 
undetected ships.  Once it returns to the wayline, it 
may have flown past this unexplored area.   

The concept of creating “ghost ships” is to reduce the chance of these circumstances arising.  Ghost ships are 
stationary and placed at known locations in the AI.  For each segment, the positions of the ghost ships are 
included in the current tour, forcing the aircraft to fly towards them.  Once “detected” by the aircraft’s 
sensors, a ghost ship is removed from the tour.  Including ghost ships will increase the distance travelled by 
the aircraft in seeking to classify extra ships.  They are also more computationally expensive, as they are 
included in the tour and thus considered by the tour improvement algorithm.   

Two ghost-ship patterns are included in this model for comparison, with ghost ships placed on the AI and 
segment boundaries.  Figure 4 shows the ghost ship placement and sample run for the “step” pattern.  The 
other is a “zigzag” pattern, which encourages a more wave-like path through each segment.  In both cases the 
ghost ships are spaced at distances corresponding to the diameter of the aircraft’s radar detection range. 

3. MODEL DESCRIPTION 

The model considers a square AI, 300 n mile by 300 n mile, with aircraft speed of 300 kn and detection range 
of 50 n mile.  (Knots and nautical miles are conventional in military aviation and marine navigation.)  The 
maximum time is 8 hrs: if this time is exceeded and the aircraft has not covered the entire AI, the model stops 
and no more ships may be classified.  Classification range is 5 n mile.  Ship headings are randomly sampled 
from a uniform distribution over 360°.  Ship speeds are randomly sampled from a uniform distribution 
between zero and a maximum speed set as a model parameter.  Only ships within the AI may be classified.   

Given these and other parameters, the “critical ship density” beyond which classifications cannot physically 
reach 100% can be estimated (Bocquet, 2008) at around 8-9 ships per 10,000 n mile2.  This is because TSP 
heuristics give tour lengths proportional to the square root of the ship density (Supowit et al, 1983).   

The model makes some simplifying assumptions.  A “cookie-cutter” radar model is used, whereby a ship is 
detected if it is within the radar range, and undetected if it is not.  All ships are assumed to be of the same 
type for purposes of radar detection range: in reality a fishing boat would have a substantially smaller radar 
signature than a large merchant vessel, for example.  The model is 2-D, with no consideration given to 
variations in aircraft altitude.  The speed and heading of each ship remains constant during a simulation run.  

The maritime surveillance model is coded in MATLAB® with a one minute time step.  The tour improvement 
technique is a genetic algorithm (Holland, 1975) to solve open TSPs obtained from the MATLAB® Central 
file exchange.  The population size is set to four times the number of ships in the current tour (including 
ghost ships when chosen) with the number of iterations set to five times that amount.  These parameters were 
found to be a reasonable balance between accuracy and computation time.  The GA results matched well with 
an exhaustive tour search technique at lower densities.  A total of 200 runs were completed for each case.   

One interesting feature observed during analysis was the model occasionally oscillating between alternate 
tours.  The improvement method chooses a particular route for a given tour: once executed, the new tour may 
include a new ship detection, or the removal from the tour of a ship now out of detection range.  When 

Figure 4. Sample flight path (blue dashed line) 
when ghost ships (yellow triangles) are placed in 
an AI.  Here they are placed in the “step” pattern.
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applying the improvement method to the new situation, it may return a route which, when executed, results in 
the previous tour arising, and so on.  To escape this, a rule was implemented forcing the aircraft to head to 
the closest ship until oscillations ceased.  Allowing the model to “remember” all ships previously detected 
should overcome this issue and is plausible in low-density environments, but less so for higher densities.  

In addition to the tested enhancements, a “nearest wayline” rule is applied throughout constraining the 
aircraft to only classify ships within the boundaries of the current segment.  An exception is a ship just 
outside those boundaries, with a heading that will cause it to enter the current segment.   

4. RESULTS 

Results (averages and 95% confidence intervals) are shown for the three options considered in section 2.  The 
“baseline” configuration is an S-shaped search pattern, a default heading of direct-to-waypoint and no ghost 
ships.  Average ship densities vary from around 1-14 ships per 10,000 n mile2: i.e., ~10-120 ships in the AI. 

Two cases for ship speeds are considered – stationary ships; and speeds between 0 and 20 knots.  Cases of 
ship speeds to 10 knots were also run.  Note that the primary Measure of Effectiveness (MOE) of percentage 
of ships classified considers the number of ships classified divided by the average number of ships in the AI 
over the duration of the mission.  Earlier work (Marlow et al, 2007) considered the total number of ships that 
ever entered the AI, so MOE values in this paper will be higher.  The average number that enter the AI per 
hour can be calculated (Koopman, 1980): for the values considered here, it is 0.17ρ (to 10 kn) and 0.34ρ (to 
20 kn) where ρ is the ship density per 10,000 n mile2.   

4.1. Waypoint variation 

Figure 5 shows the average 
percentage of ships classified against 
the average ship density in the AI for 
the different waypoint patterns.  The 
results for all three search patterns 
are effectively identical across the 
considered range of ship densities, 
with the largest difference at very 
low densities for the 20 knot case.  
At lower densities, the aircraft still 
completes the search of the AI with 
considerable time to spare.  

Each case tested theoretically has the 
aircraft covering an area of the AI 
only once.  Extra runs were 
performed where the aircraft could 
overlap areas previously covered, 
e.g., using extra spirals or a double-S 
shape.  These gave classifications 
that were up to several percentage 
points better than those in Figure 5 at 
lower densities (as the aircraft spent 
more time covering a sparse AI), but 
were worse beyond the critical 
density (as the aircraft did not have 
enough time to cover a dense AI). 

4.2. Changing the default heading 

Figure 6 shows the results for ships classified against ship density for various default headings.  The 
perpendicular return-to-wayline rule performs the best of the three at lower densities, as expected, as this 
method enables the aircraft to cover a greater area of the AI.  The largest difference is seen in the case where 
ship speeds can range up to 20 knots.  The percentage difference in classifications between the perpendicular 
return-to-wayline and the default direct-to-waypoint heading is around 5.5 percentage points at the largest 
point (at ship density around 4.5).  This equates to around 1.5 extra ships on average: the average extra time 
taken to achieve these additional classifications slightly exceeds half an hour. 
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Figure 5. Ships classified versus density for various initial search 
paths: (top) stationary ships; (bottom) ship speeds to 20 kn
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It is also instructive to note the 
number of times that 100% 
classifications are achieved in the 
stationary ships case.  The 
perpendicular case achieves 100% 
classifications 65% of the time with 
10 ships in the AI (ship density 1.1) 
and 48% of the time for the 
midpoint case, compared with 39% 
of the time for the baseline heading.  
For 40 ships (density 4.4), 100% 
classifications are achieved in 41% 
of runs (perpendicular), compared 
with 16% (midpoint) and 13% 
(baseline). 

In all graphs it is evident that once 
the critical ship density is reached, 
the perpendicular return method is 
inferior to the others.  The 
advantage gained by the 
perpendicular return in using the 
extra time to search the AI is a 
disadvantage beyond this critical 
point, as it allows less coverage of 
the AI in the available time.   

4.3. Including ghost ships 

Figure 7 show the results for the two ghost ship patterns against the baseline results.  At lower densities, the 
presence of the ghost ships succeeds in drawing the modelled aircraft to classify a larger percentage of ships.  
As for the default headings, this equates to around 1-2 ships more on average at lower densities.   

Again, it is worth noting the 
improvement in achieving 100% 
classifications by including ghost 
ships.  For stationary ships, a 
classification rate of 100% is 
achieved 62% of the time for 10 
ships in the AI (ship density of 1.1 
per 10,000 n mile2) for both ghost 
ship patterns, while it is achieved 
only 39% of the time without ghost 
ships.  For 20 ships (density 2.2), 
the 100% level is achieved 50% of 
the time (ghosts) compared with 
23% (no ghosts), and for 60 ships 
(density 6.7), it is 31% (ghosts) 
compared with 10% (no ghosts).  
Including more ghost ships in 
appropriate locations would 
probably increase classifications 
further, but at the cost of increased 
computational time. 

At higher densities, using ghost 
ships is ineffective, and in fact 
counter-productive to the objective.  
Ghost ships are superfluous at such 
densities, as the AI is already 
sufficiently dense to enable the 
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Figure 6. Ships classified versus density for various default headings: 
(top) stationary ships; (bottom) ships to 20 knots 
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Figure 7. Ships classified versus density for ghost ship patterns: (top) 
stationary ships; (bottom) ships to 20 knots 
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aircraft to regularly divert to classify ships.  The extra diversions only add to the length of the mission and 
thus negatively affect the ability of the aircraft to traverse the AI in the time available, resulting in less 
coverage and therefore fewer classifications.  Including ghost ships in the AI in these instances also adds to 
computation time, due to their inclusion in the tour until their position is covered by the aircraft’s radar.  
Computational runs on average take over twice as long as for the baseline case at these higher densities. 

5. DISCUSSION AND CONCLUSIONS 

The perpendicular default heading and the inclusion of ghost ships have been successful in improving ship 
classifications at lower densities, and in increasing the frequency of achieving 100% classifications.  At 
higher densities, results indicate that the baseline pattern is most suitable, as the variations generally fail for 
the same reasons that they succeed in the lower-density cases – i.e., they take more time to search the AI. 

Tests were employed to run the perpendicular heading and ghost ships options together, but no further 
improvement was found – in fact the results were very similar to those for the ghost ships options only.  This 
is probably due to the same basic principle behind the two methods, requiring the aircraft to divert either 
from the ship to the wayline (for perpendicular return) or from one part of a segment to a “ship” (for ghosts). 

It is proposed to extend this work to examine methods for maximising classifications for densities beyond the 
critical density.  One possible method is the implementation of “budgeting” routines.  Given the constraint 
requiring the aircraft to cover the entire AI in the available time, such routines would enable aircrew to 
choose which ships to visit, and which to omit from the tour, in order to maximise classifications.   
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