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Abstract: Topography in the form of Digital Elevation Models (DEMs), is widely used to derive 
information for the modeling of hydrologic processes.  Hydrologic terrain analysis augments the information 
content of digital elevation data by removing spurious pits, deriving a structured flow field, and calculating 
surfaces of hydrologic information derived from the flow field.  The increasing availability of large terrain 
datasets with very small ground sample distance (GSD) poses a challenge for existing algorithms that process 
terrain data to extract this hydrologic information.  This paper will describe a parallel algorithm that has been 
developed to enhance hydrologic terrain pre-processing so that larger datasets can be more efficiently 
computed.  This paper describes a Message Passing Interface (MPI) parallel implementation for Pit Removal. 
This key functionality is used within the Terrain Analysis Using Digital Elevation Models (TauDEM) 
package to remove spurious elevation depressions that are an artifact of the raster representation of the 
terrain. The parallel algorithm works by decomposing the domain into stripes or tiles where each tile is 
processed by a separate processor. This method also reduces the memory requirements of each processor so 
that larger size grids can be processed.  The parallel pit removal algorithm is adapted from the method of 
Planchon and Darboux that starts from a large elevation then iteratively scans the grid, lowering each grid 
cell to the maximum of the original elevation or the lowest neighbor.  The MPI implementation reconciles 
elevations along process domain edges after each scan.  The parallel pit removal algorithm has replaced a 
serial implementation that was based on a recursive search to identify the pour point outlet of each pit so that 
the elevation of grid cells within the pit could be raised to that level.  Initial tests indicate that the MPI 
overhead within the algorithm results in slower run times for small problems but produces significantly 
improved processing speeds for a large grid using sixteen processors. We have also been able to process grids 
much larger than were possible using the memory based single processor implementation.   

Specifically for a modest size grid of 28 x 106 grid cells, the serial fill algorithm (base) required 71 seconds 
to complete. The parallel implementation using 5 processors required 51 seconds. The parallel algorithm 
using 16 processors required only 20 seconds.  For a much larger grid of 404 x 106 grid cells the base 
algorithm required 1289 seconds to complete.  The parallel algorithm using 8 processors required 954 
seconds while using 16 processors required 474 seconds. 
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1. INTRODUCTION 

Digital Elevation Models (DEMs) are data structures representing rectangular grids of terrain data composed 
of cells arranged as a raster, where each cell holds a floating point value equivalent to the elevation of that 
geographic point above some base value (usually, sea level) (Wilson and Gallant, 2000). Cells are typically 
arranged in row-major order when stored in memory, analogous to 2-dimensional data arrays. DEMs are 
derived from the actual ground surface using a variety of methods including photogrammetry, lidar or 
interferometery and form the basis from which digital relief maps are produced. As these methods have 
increased in precision and accuracy, DEMs have gone from 30-100 meter resolutions 5-10 years ago to 1-5 
meter resolutions today for many areas within the United States. New data collection devices and lower 
collection costs will speed this trend for locations throughout the World. As a result of the increased 
precision and file sizes, many of the hydrologic preprocessing and analysis techniques for coarser resolutions 
and smaller DEMs become prohibitively time consuming when being applied to high-resolution data.  

This paper reports results from a project whose goal is to produce a parallel implementation of the TauDEM 
suite of terrain analysis functions (http://www.engineering.usu.edu/dtarb/taudem) so as to improve runtime 
efficiency and provide a capability to run larger problems.  The most computationally time consuming 
function in TauDEM is the pit filling function that is the focus of this paper. 

In natural topography, where the surface is sculpted by fluvial processes, pits comprising depressions 
completely surrounded by higher terrain are rare.  However, in digital terrain representations, pits comprised 
of grid cells surrounded by grid cells of higher elevation occur more commonly due to deficiencies in the 
digital elevation model production processes and generalization in the representation of terrain (Jenson and 
Domingue, 1988; Jenson, 1991). Drainage correction is the processes of altering (correcting) the DEM to 
remove these pits.  Care needs to be exercised not to "correct" actual terrain pits, and there are procedures to 
identify real pits to the algorithm so that they are retained. 

Drainage correction is generally the first step in established procedures for developing a flow model and 
deriving flow related fields that augment the information content in a DEM (Beven and Moore, 1992; Wilson 
and Gallant, 2000; Tarboton and Ames, 2001; Maidment, 2002). The most common approach to drainage 
correction is to fill pits.  Pit filling was first implemented using methods that identify the region draining to 
each pit and the lowest point on the boundary, the so called pour point, then raising the elevation of all points 
within the region to at least the pour point elevation (Jenson and Domingue, 1988).  TauDEM presently uses 
an implementation of this approach that first identifies pits then recursively scans upslope to find the pour 
point so as to be able to raise the elevation within the pit to that level. More efficient implementations of pit 
filling have been developed (Planchon and Darboux, 2001; Arge et al., 2003).  The Planchon approach fills 
pits by covering the whole surface with a thick layer of "water". Then, it removes the water in excess, 
working inwards from the edges. Doing so, the algorithm naturally enters the depressions by their outlet. 
Furthermore, embedded depressions do not need a special procedure. The algorithm has a time-complexity of 
O(N1.2) and so, can process large DEMs with an acceptable time-cost (Planchon and Darboux, 2001).  The 
Arge et al. (2003) approach relies on input-output efficient algorithms that explicitly manage data placement 
and movement. 

Sometimes errors in grid DEMs due to interpolation result in artificial dams across valleys and pit filling has 
the effect of raising the elevation of a large number of upstream grid cells.  This alters the data at the very 
valley locations where it is often of greatest importance, for example for evaluating wetness index and runoff 
contributions from partial contributing areas adjacent to streams.  To circumvent this problem, breaching or 
carving the DEM to correct it to allow drainage has been suggested.  The TOPAZ package (Garbrecht and 
Martz, 1995; Garbrecht and Martz, 1997) breaches these artificial dams using a limited (3 or 4 grid cell) 
search downstream from the pour point of each pit.  Soille et al. (2003) presented a carving procedure that 
removes pits by creating a descending path from each pit to a point having a lower elevation value.  Carving 
paths are identified by a flooding simulation starting from the river outlets, similar to the Planchon et al. 
(2001) approach for pit filling, and trace a path that a rising tide of water from outside the domain would take 
in overtopping the pour point and reaching a pit.  Soille (2004) presented an optimal pit removal method that 
improved further on this approach.  Once the carving path to a pit is identified, a trade-off between lowering 
the terrain along this path, or raising the elevations in the pit is evaluated to minimize the alterations of the 
original DEM. 

Information on the position of existing streams may also be used to guide drainage correction (Callow et al., 
2007).  Approaches include stream burning (Maidment, 1996) that lowers the elevation of all stream grid 
cells by a preset amount prior to processing and AGREE (Hellweger, 1997), which uses a raster 
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representation of the known stream network to lower the landscape across a user specified horizontal buffer 
distance and depth as well as burning a stream at a selected depth.  

With the increase of scope and resolution of DEMs, the process of hydrologically correcting large DEMs has 
become increasingly difficult to perform on serial processors and in some cases, impossible given today’s 
hardware limitations for single-processor systems. The memory required to store these DEMs is now on the 
order of gigabytes and is steadily growing. Processing these DEMs on a single machine requires significant 
amounts of memory and often results in computer thrashing – excessive swapping of data between memory 
and the hard disk – resulting in unacceptably slow performance. 

This paper presents an MPI parallel implementation of the Planchon and Darboux (2001) pit fill algorithm. 
The remainder of this paper is organized as follows: Section 2 introduces the Parallel implementation of 
Planchon's Fill algorithm method. Section 3 illustrates the effectiveness of the parallel algorithm on a small 
clustered computing system. Concluding remarks are presented in Section 4. 

2. PARALLEL IMPLEMENTATION OF PLANCHON FILL ALGORITHM 

Planchon's algorithm (Planchon and Darboux, 2001) was chosen as a starting point for implementation of a 
parallel drainage correction procedure because it was known to be more efficient than the existing TauDEM 
algorithm.  In addition to being more efficient, this algorithm also uses an approach based on techniques from 
image processing that are similar to the carving and optimal pit removal methods published by Soille et al. 
(2003) and Soille (2004). Our strategy is to first implement the Planchon approach to obtain results identical 
to the existing TauDEM method, and second to improve the code to provide improved pit removal 
functionality by incorporating carving and optimal 
pit removal.   

Planchon's algorithm (Algorithm 1) is initialized 
with a new DEM, P,  of infinite (or very large) 
height. Around the borders, the new DEM's 
elevation is reduced to match the original DEM. 
Once this is completed, our implementation 
performs a series of scans continuously through the 
rest of the DEM. During each scan, a cell searches 
through all its neighboring cells and determines the 
lowest neighboring cell. The cell must be as high as 
or higher than its lowest neighboring cell in order to 
drain or be flat. If the original elevation is greater 
than or equal to the lowest neighboring cell's 
elevation, we set that cell to its original elevation. 
Otherwise we set the elevation equal to the lowest 
neighboring cell's elevation. Each scan is a 
combination scanning left to right or right to left and 
top to bottom or bottom to top. The procedure 
rotates through all eight combinations of the way 
these scans can be performed, because varying the 
direction from which a pit is approached increases 
the likelihood of it being resolved quickly reducing 
the overall number of iterations. We stop scanning after a scan completes without changing any cell in the 
DEM.   

In order to implement this procedure for large data sets in parallel, a method must be devised to partition the 
data across multiple processes. This study implements a striped partitioning scheme where the grid is divided 
horizontally into p equal parts and mapped to p processes, with any portion of the grid remaining being 
attached the last divided portion. Each process reads in their assigned portion of the DEM from a file, along 
with a row of cells directly above and below the assigned portions. Each process is allowed to have access to 
all neighboring cells without the need of any extra communication between processes. This method of 
partitioning the data offers some benefits, in particular, each process inherently knows which process 
contains the neighboring portions of the DEM, and communication can be simplified. The striped partitioning 
scheme, as opposed to a tiled partitioning scheme (where the DEM is divided vertically as well as 
horizontally,) requires a greater number of data transfers but fewer distinct communications events (two per 
processor in a north/south orientation for the striped scheme, versus four in a north/south/east/west 
configuration for a tiled partitioning scheme). Furthermore, the data for the striped scheme is contiguous in 

Algorithm 1 Parallel Planchon Fill. D denotes the 
original elevation. P denotes the pit filled 
elevation. n denotes lowest neighboring elevation 
of i evaluated on the pit filled elevations, P. 
Send(data, destination) sends data given in the 
first argument to the process designated by the 
second argument. Recv(buffer, source) receives 
data from source and stores it in buffer. 

 

ParallelPlanchonFill(…) 
1: PlanchonInitialize( D,P) 
2: Do 
3:       for all i in P 
4:       if D(i) > n 
5:   P(i) ← D(i) 
6:      else 
7:  P(i) ← n 
8:       endfor 
9:       Send( topRow, rank-1 ) 
10:     Send( bottomRow, rank+1 ) 
11:     Recv( rowBelow, rank+1 ) 
12:     Recv( rowAbove, rank-1 ) 
13: Until P is not modified 
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the input data file, resulting in a faster overall load time. This approach can be a disadvantage for data sets 
that are pre-tiled (not striped) and must be combined before the pit removal algorithm can proceed. 

For the parallel approach, each process provides solutions for a portion of the whole DEM. Each process 
works on its own portion in the same manner as described. However, after each scan, each process is required 
to send and receive the new elevations along the borders of their portions. In this way, the work and memory 
can be distributed over a many 
processes. Although this approach 
incurs data movement overhead 
inherent to domain decomposition, 
the overall speed increase 
overcomes this when dealing with 
large grids. 

3. EFFECTIVENESS OF THE 
PARALLEL ALGORITHM 

Results for two datasets are 
included here. The first dataset we 
used was for a relatively small 
DEM, so that we could verify the 
correct functionality of the new 
algorithm in a parallel environment. 
In Figure 1 the top line is our 
parallel Planchon algorithm, 
compared to the baseline algorithm 
that is (was) currently used in 
TauDEM. The fact that the parallel 
version is slower than the older 
serial algorithm is not surprising, as 
the overhead for communication 
between processes, as well as the 
different way in which the 
algorithm progress requires more 
time than it is worth for this small 
image.   

In the Figure 2 we present the 
performance results of our 
algorithm on a larger DEM. In this 
test a DEM for the Great Salt Lake 
area was used. Results using the 
new algorithm range from 250 
seconds for 1 processor to less than 
30 seconds for 16 3 GHz Pentium 
IV processors in the small-scale 
system in our lab. For comparison 
purposes, the pit-filling process for 
this DEM using the old (i.e., non-Planchon) algorithm running on a single-processor system required over 5 
days. This comparison includes the speed up due to a better algorithm together with use of parallel 
processors. Nevertheless, the speed up shown as the number of processors increase is remarkable. We also 
ran the ArcInfo fill command on the same data set using a 3.4 Ghz Pentium Xeon workstation for this 
problem.  This process required 71 seconds for the serial version to complete.  This is in comparison to the 
333 seconds needed for a one-processor “parallel” version running on the old Pentium IVs in the cluster.  
Even with this disparity in execution times for the same task, the parallel version achieved parity with the 
Xeon processor with 4 processors in the parallel version for this data set.  With 16 processors, the pit-filling 
task was completed in less than 10 seconds. 

Finally, we ran the algorithm on a high-resolution DEM entitled ‘NedGridb’, which is a 14849 x 27174 test 
dataset, also from the Great Salt Lake region.  For comparison, we also ran the Arcinfo pit fill algorithm on 
the 3.4 Ghz Pentium Xeon, which required 1289 seconds in this case.  Only parallel configurations greater 

 

Figure 2. Time taken to complete parallel pit fill calculation as a 
function of the number of processes on a grid of size 4045 X 7042, 

compared to ArcInfo fill function on a 3.4 Ghz Pentium Xeon 
workstation.  

 

Figure1. Time taken to complete parallel pit fill calculation as a 
function of the number of processes on a grid of size 581x385, 

compared to the baseline TauDEM algorithm.  
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than 8 processors were tested for this dataset, because the machines in the cluster have only 1 gigabyte of 
memory each.  The execution times for this run are given in figure 3. 

4. CONCLUSIONS 

This paper has presented a parallel 
algorithm for pit filling of digital 
elevation models used in the hydrologic 
analysis of large terrain data sets. The 
algorithm is based on the original 
algorithm of Planchon that is relatively 
straightforward and can be easily 
augmented for a variety of similar 
terrain analysis tools. Furthermore, 
because memory constraints are 
ameliorated by the increased aggregate 
memory capacity of cluster systems, the 
algorithm runs faster than could be 
anticipated by the linear speedup gains 
of classic parallel implementations.  
This algorithm is being incorporated 
into the parallel implementation of the 
TauDEM terrain analysis software.  We 
have work under way to incorporate the 
specification of existing streams in this algorithm by combining a carving approach to force drainage of 
DEM cells along specified stream paths while using the parallel Planchon Fill to remove pits from the 
remainder of the DEM.  We also have work underway to develop parallel implementations of other TauDEM 
functions and have achieved similar performance increases for the D8 contributing area calculation (Wallis et 
al., 2009). 
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