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Abstract: A Climate Change Adaptation Strategy Assessment Tool (CCASAT) for agriculture with 
integrated GIS capability was described. Historical climate data from 1889 to 2008 and 12 GCMs 
downscaling scenarios were integrated in the tool. Daily climate change data used were based on state-of-
the-art statistical downscaling methods which allow for the description of fine scale structures. Development 
of GIS functionality within CCASAT involves the selection of mapping projection, boundary allocation, 
interpolation and a graphical display of the spatial data. Several mapping projections and data interpolation 
were implemented in CCASAT. All interpolation methods were tested using cross validation and users can 
review these analyses and select the best interpolation method to plot their data. To demonstrate the GIS 
functionality in CCASAT, the impacts of climate change on wheat flowering in the NSW wheat belt was 
investigated as a case study. A non-intercepted spherical equation described well the relationship between 
the semi-variance in changes of annual long-term hot days (dh, Tmax ≥ 28°C) and the lag-distance. Cross 
validations showed that ordinary Kriging methods were the best scheme for interpolation of this index. The 
results showed that the number of hot days in 2050 during the winter crop growing season (1 May-30 
November) would increase by up to 28 days, while frost days (Tmin ≤ 2°C) would decrease by up to 29 days. 
Predicted changes in the winter-genotype wheat flowering dates ranged from 5 days later in the north-
western corner and 10 days earlier in south-eastern corner of the NSW wheat belt. Spring-genotype wheat 
flowering is projected to be earlier by up to 7 days. The delay in the winter-genotype wheat flowering date 
is due to the delay in the completion of vernalisation in the warmer conditions. The analysis showed that 
number of frost days at flowering are not projected to change dramatically in the future, however an 
increase in hot days during wheat flowering is projected to have serious implications. This case study 
demonstrates that selecting suitable genotype wheat is the key adaptation strategy for the impacts of climate 
change on wheat cropping. Spring wheat genotypes are likely to become predominate in future climate, 
while winter genotype will only be viable in areas where sufficient days of cool temperature exist for 
completion of vernalisation. Breeding strategies should focus on releasing early-sowing genotypes that do 
not require vernalisation. 
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1. INTRODUCTION 
 

In climate or systems modelling, the value of geographic analysis and spatial visualization is well 
recognised because it is able to improve interpretation of the overall modelling outcomes as single site 
simulation has limited applicability. Therefore, use of GIS software is widespread, but is not an easy task 
with many potential users not equipped to take advantage of the comprehensive spatial and visualization 
analysis features. One possible solution is to develop a simplified task-specific system that can be easily 
used by non-GIS users. Such a system can either incorporate GIS ActiveX controls (Smakhtin and 
Eriyagama, 2008) or embed GIS software such as ArcGIS (Panagos et al., 2008; Liu, 2009). These GIS-
enhanced systems can be useful for specific tasks. For example, the GIS-based Sediment Assessment Tool 
for Effective Erosion Control (SATEEC) was developed to estimate soil loss and sediment yield and can be 
used to identify areas vulnerable to soil loss and to develop efficient soil erosion management plans (Lim et 
al 2005). However, it is difficult to implement in a portable end-user tool if the database is very large and/or 
the format of input data differs from the embedded tool. 
 
Studies on potential impacts of climate change on agriculture and/or the environment have rapidly increased 
in recent years. Understanding the regional impacts of climate change on biophysical systems requires a 
modelling approach incorporating Global Climate Model data, the cornerstone of the climate change 
research. However, climate model projections at higher temporal and spatial resolutions are not adapted to 
describe local effects and thus statistical methods are needed to correct the projections from the GCM using 
historical climate information.  
 
In particular, many climate and agricultural indices are used to describe the system being investigated and 
are therefore useful to translate the large-scale climate change information to model the impacts of climate 
change and develop the appropriate adaptation strategies. A GIS framework provides an enhanced ability to 
assess the possible responses from a range of adaptation strategies to climate change by integrating the 
outputs from GCMs and various modelling efforts in agriculture. The purpose of this work was to develop a 
GIS-based risk assessment tool to utilise the generic output from the GCMs and apply them, through a 
modelling framework, to assess the specific responses required by each of the major agriculture sectors. As 
a case study, the impact of climate change on wheat flowering and its implications in term of adaptation 
strategy are outlined in this communication. 
 
2. DEVELOPMENT GIS FUNCTIONALITY 
 
Development of stand-alone GIS functionality involves four steps: implementation of map projection, 
determining boundary allocation, data interpolation, and a graphical display of the spatial data. The first 
three steps for developing a standalone GIS are briefly outlined below. 
 
2.1 Mapping projection 
 

Van Der Grainten projection and Lambert projections were implemented in the Climate Change Adaptation 
Strategy Assessment Tool (CCASAT). The former was famous when US National Geographic Society 
adopted it as their reference map of the world from 1992 to 1988 (Snyder, 1993) and the later was used by 
the NSW Department of Lands (GDA94). As the Van Der Grinten projection is neither equal-area nor 
conformal, we implemented Lambert conformal conic projection as well as Lambert Azimuthal equal-area 
projection as an alternative. The two standard parallels for the GDA94 Lambert projection are -30o45’00” 
and -35o45’00”. The alternative mapping projections are included as the tool has potential for use beyond 
NSW, Australia.   
 
2.2 Boundary 
 

It is assumed that a boundary dataset is a set of limited points enclosing a geographical area of interest. The 
boundary is approximated as a set of joined linear lines between each two neighbouring points. 
 
2.3 Interpolation 
 

Inverse Distance Weighted (IDW) and Kriging interpolations are implemented in CCASAT. 
 
IDW Interpolation: IDW is a simple and easy interpolation method for predicting unmeasured values. This 
method uses the weights directly calculated from the inverse of powered distances. 

1937



Liu et al., GIS in Climate change adaptation strategy assessment tool 


=

=
−

−














=

n

i
in

j

k
pj

k
pi

p Z
d

d
Z

1
1 ,

,
         (1) 

Where k = 1, 2, 3,..., di,p is the distance between the observed point i and the predicted point p; Z is the value 
of the indices. Noticed that if k = 0, Eq. (1) becomes an interpolation which is calculated by the simple 
mean of nearby points. The main disadvantage of this method is the arbitrary definition of the interpolation 
which is directly related to distances (Mueller et al, 2005). 
 
Kriging Interpolation: In this scheme, interpolation is based on semi-variances which are calculated as 
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where n is the number of pairs of sample points separated by distance d (called log distance), z(x) and 
z(x+d) are the data values at the two paired locations (Bargaoui and Chebbi 2009). The relationships 
between the semi-variance and the lag distances are often nonlinear. In CCASAT, 13 equations are included 
for nonlinear regression of the semi-variance relationship. These equations include spherical, exponential, 
Gaussian models and their derivatives which have no intercept. 
 
For each selection of indices the relationship between semi-variance and lag-distance needs can be 
evaluated and best fitted relationship are used for interpolation. To assist the selection of the best 
interception scheme, the Kriging with the best fitted equation and IDW interpolation methods were 
validated by leave-one-out cross validation (Liu 2007). The power of k = 0, 1, 2, …, 8 of IDW, ordinary 
Kriging and universal Kriging interpolations were compared by a number of statistical variables such as 
correlation coefficient (R2) or root mean squared errors (RMSE). 
 
To illustrate the validation of the interpolation methods, the change in the long-term annual averaged 
number of hot days are briefly discussed. The relationship between semi-variance and lag-distance was well 
described by a modified spherical equation (no intercept), with a R2 of 0.986 (data not shown). Cross 
validation showed that the ordinary Kriging interpolation gave the best result of R2=0.969, compared to 
IDW (p=3) with an R2=0.968 which was the best interpolation over all 9 IDW interpolation. It also showed 
that IDW (p=0) gave an R2=0.959, suggesting that even a simple mean of observations can give good 
interpolation. Similar results were obtained for other climate indices. 
 
3. OVERIEW CLIMATE CHANGE ADAPTATION STRATEGY ASSESSMENT TOOL (CCASAT) 
 

Statistically downscaled climate data were obtained from the Bureau of Meteorology’s statistical 
downscaling model (BoM-SDM) based on an analogue approach (Timbal and McAvaney, 2001; Timbal et 
al., 2009). Daily GCM data were extracted from the Coupled Model Intercomparison Project No3 (CMIP3) 
assembled as part of the Intergovernmental Panel on Climate Change (IPCC) 4th Assessment of Climate 
Change Science released in 2007 (Solomon et al., 2007). Because daily data are required to perform the 
statistical downscaling, only 12 out of 23 GCMs were used. Daily climate data were available for three 
time-slices: 40 years from 1961 to 2000 for the 20th century simulations and two 20 year periods from 2046 
to 2065 in the middle of the 21st century and from 2081 to 2100 at the end of the 21st century. For future 
projections, two emission scenarios were considered (out of the 6 recommended by the IPCC (2000): A2, a 
high emission scenario and B1, a low emission scenario. 
 
To analyse how the climate indices including temperature and rainfall have changed in NSW over the period 
1961 to 2000, single site analysis can be undertaken in CCASAT. Plotting the time-series indices over 
historical record and the model time slices projections is available for any indices selected in any period in 
the year or season. Prior to examining how these indices may change in the future the user can evaluate the 
downscaled GCM by comparing results for the time-slice at the end of the 20th century against historical 
baseline information. Once a satisfactory downscaled GCM was found that provide suitable reproduction of 
a particular index, the user can evaluate the response of that index to climate change 
 
CCASAT was developed to facilitate the analysis of the impacts of the climate change on a long list of 
important climate indices for agricultural applications. Wheat flowering was modelled by a phenological 
model as described by Liu (2007). This model has been included in CCASAT to highlight spatially how 
different climate change projections will alter flowering dates. Two genotypes (spring and winter) were 
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parameterized and incorporated in CCASAT. Wheat has been used to demonstrate the tool’s potential, but it 
has been designed in such a way as to allow a similar analysis for a range of other crops. 
 
As a starting point, single site table allows for plotting of an index as a time series, (any period of the year 
can be plotted). In a second step, once an index is selected, spatial analysis can be performed to obtain 
pattern of impact across NSW. The impact of the GCM downscaled projections on that particular index (any 
combination of GCM, emission scenarios or period of the year) can be displayed. The GIS capacity of the 
tool is such that the graphics can be processed and displayed within seconds for a resolution of up to 500 m.  
The combination of the 19 indices and 12 GCMs with two emission scenarios gives 437 cases. In each case, 
the indices are calculated as cumulative distribution functions and represent either the current climate period 
1961-2000 (Imc), hind-casting period 1961 to 2000 (Ihc), projections by 2050 (I2050), or 2100 (I2100), change 
by 2050 (ΔI2050), or  2100 (ΔI2100) and errors (between Imc and Ihc). A total of 24 GIS maps are thus created 
for each case (a total of 10,488 for one period of the year). This number is increased if more than one 
period, i.e. seasonal rainfall, or different crop varieties, are analysed. 
 
It is well recognised that no single GCM perform better for every climate variables everywhere. Thus, user 
should evaluate GCMs performances for any specific climate index, and its spatial signature using the GIS 
mapping tool and comparing the distributions between the indices associated with the hind-casting of the 
historical record. This allows for the identification of the most suitable GCM for a specific index. In 
CCASAT, when an index is selected, the performance of all GCMs for the selected index is evaluated. The 
index calculated based on the GCM simulation of the 1961-2000 time-slice (hind-cast) and based on the 
historical record for the same period were considered as two populations. Kruskall Wallis test (KW) and the 
Median Test of Two Population (MT) (Kanji, 1993) were used to test the null hypothesis that the two 
populations being identical. KW tests were used if the GCMs projections for 1961-2000 and historical 
recordings for 1961-2000 were from two populations with the same mean, while MT tests were used if they 
were from two populations with the same frequency distribution.  
 
GCMs were ranked based on the combined rank of the two χ2 values (Fig 1). GCM performance varies 
depending on the index selected. MRI-CGCM 2.3.2, CSIRO-Mk 3.5 and GFDL CM2.0 were the overall 
best performer for averaged annual rainfall, extremes in maximum temperature and annual mean minimum 
temperature, respectively. The level of performance of the GCM differs according to the variable of interest; 
in the case of annual rainfall only one GCM performed well (P<0.05 for Kruskall Wallis test and KW test), 
8 GCMs were satisfactory according to the same test for mean minimum temperature. The results highlight 
the importance of GCM selection, a non trivial task as spatial analysis of all available GCMs and 
appropriate statistics are needed. The innovative design of CCASAT makes this task very quick as only a 
few seconds of computing time is required for processing these numbers and the results are displayed in an 
easy to analyse way . 

 
 
 
 
 
 
 
 

 
 
 
4. CASE STUDY 
 
4.1 Indices related the impacts of climate change on wheat flowering 
 

The potential impacts of climate change on crop production is analysed using CCASAT. In order to provide 
guidance for an adaptation strategy for future wheat cropping systems, simple phenological models for two 
contrasting wheat genotypes were included. The phenology models and parameterisation procedures are 
explained in detail in Liu (2007). The climate depend parameters of these models were varied based on the 
scenario information (either A2 or B1) from the 12 GCMs from the CMIP3 database, downscaled using the 
BoM-SDM for two time-slices (by 2050 and 2090). These parameters included:  
dh,  number of days when Tmax > 28.0 oC, reflecting hot days for winter cropping; 

Figure 1. Statistical tests of GCMs performances for impacts of climate change on indices: dh (A), f, (B) and dff (C)
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df, number of days when Tmin < 2.0 oC, reflecting frost days; 
f, flowering date, 50% wheat heads flowering . 
dh and df were analysed for the period from 1 May to 30 November and flowering period from f - 10 to f +10 
days. 
 
4.2 Impacts of climate change on frost days and hot days during winter crop period 
 

With global warming, the GFDL-CM2.0 project that frost days by 2050 will decrease by up to 29 days (Fig. 
2A), with a decline in excess of 12 days for almost 80% of the state. During winter crop growing periods, 
hot days are projected to increase by 2050 by up to 28 days, but 90% of NSW state are projected to have 12-
28 days more hot days by 2050 (Fig. 2B). The projected increases in hot days show two distinct regimes: a 
coastal strip east of the Great Dividing Range (GDR) and the remaining area in-land. Increases in hot days 
are expected to be less than 16 days along the coastal strip but are projected to be 16 to 29 days in-land. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.3 Impacts of climate change on wheat phenology 
 
Currently, wheat flowering in NSW wheat belt ranges from mid September in the north-west to mid October 
in south-east of the NSW wheat belt. The flowering time of the two contrasting genotype wheats was 
simulated to be well within the current flowering time (data not shown). By 2050 under A2 CO2 emission 
scenario projected by CSIRO-Mk 3.5, the flowering time of the winter genotype was to vary from 5 days 

Figure 3. Change on winter genotype wheat flowering (A) and spring genotype wheat flowering (B) 
projected by CSIRO-Mk 3.5. The changes are the differences between long term means of 2050 (2046-
2065) and current (1961-2000) flowering data when winter wheat sown on 1 May and spring wheat sown on 
20 June. The projection was based on CO2 emission scenario. 

Figure 2. Changes in the number of days when Tmin  ≤ 2oC (A) and Tmax ≥ 28oC (B) as projected by GFDL-CM 2.0 in 
NSW. The changes are the differences between long term means of 2050 (2046-2065) under A2 CO2 emission scenario 
and current (1961-2000) during May and November. 
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later in the north west to 11 days earlier in the central tablelands (Fig. 3A), while the flowering time of the 
spring genotype was within 4-7 days earlier than current timing across NSW (Fig. 3B). The winter genotype 
in the current cool environment will flower earlier as there will still be sufficient cool conditions for 
completion of vernalisation in projected climates of the future, and the projected warmer conditions would 
promote crop flowering. However, in the currently warm areas, further warming will result in insufficient 
periods of cool temperatures for vernalisation and hence flowering time of the winter genotype wheat will 
be delayed. As spring wheat genotype wheat does not require vernalisation, the warming conditions will 
make the crop flowering consistently earlier across the whole wheat belt of the state. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 shows that in a future climate under emission scenario A2, the number of frost days in both winter 
and spring are projected to be slightly changed, ranging between -1.0 and +0.5 day for winter wheat and -0.6 
and +0.3 day for spring, on average. CSIRO-Mk 3.0 projection was used as it is the best performance for the 
changes in number of frost days. However, under the same emission scenario, hot days during flowering 
time could be up to 5 days more for winter and 2 days more for spring, according to GISS-ER. About 30% of 
NSW wheat belt is projected to experience ≥2 days more hot days on average, which will impact on the 
winter genotype wheats. However, only 2% of NSW wheat belt is projected to experience ≥2 more hot days, 
on average in the spring, therefore impacting on the spring genotype. 
 
5. DISCUSSION 
 
CCASAT is a simple tool coded in VB6 without inclusion of any ActiveX GIS controls nor embedded 
external GIS software. It is a stand-alone GIS framework designed in a user-friendly manner for non-GIS 
skilled users. The tool can be used for analysing climate impacts, identifying the risks and opportunities that 
will need to be responded to, defining the agricultural and geographical area most sensitive to climate 

Figure 4. Change in number frost days (A, B) and hot days (C, D) at the flowering time of winter genotype 
(A, C)  and spring genotype (B, D) wheat. Under A2 CO2 scenario, changes in number of frost days were 
projected by CSIRO-Mk 3.0, while changes in number of hot days were projected by GISS-ER. 
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change and identifying appropriate adaptation responses. Statistical tests of GCMs performances were 
provided to help users in selecting the most suitable GCMs for their specific indices. The tests were based 
on a spatial analysis. Such test is beyond the grasp of most commercial GIS software due to computing 
limitation but with the GIS-enabled CCASAT, it will only take 10 seconds to complete the spatial analysis 
of all 12 GCMs performances and present the results both graphically and in a tabular format. Since the tool 
does not rely on any database boundary, it is easily broadened to apply in other geographical areas including 
other Australia states or overseas. 
 
This paper demonstrated the useful features of GIS-enabled CCASAT. An example analysis using the tool 
showed that the number of frost days in a future climate is not projected to change dramatically, however 
projected increases in hot days during wheat flowering time will be a serious problem. Selecting suitable 
wheat genotypes is the key adaptation strategy for managing the impacts of climate change on wheat 
cropping. Spring wheat genotypes appears to be more suitable in projected future climate over most area, 
while winter genotypes is projected to remain appropriate in limited areas where sufficient periods of cool 
temperature exist for completion of vernalization. Breeding strategies would be likely placed a focus on 
releasing varieties that do not require vernalization, but can be sown early in the season. 
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