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Abstract: Digital Elevation Models (DEMs) of topography are widely used in Geographic Information 
Systems (GIS) to derive information for the modeling of hydrologic processes. We present a general method 
for flow analysis that builds upon the representation of downslope flow using the proportioning of flow 
among one or multiple downslope grid cells, such as with the D8 or D-infinity models for the representation 
of downslope flow used in hydrologic terrain analysis, to enable the calculation of a new set of flow-based 
derivative surfaces. This general method which we refer to as flow algebra, extends flow accumulation 
approaches commonly available in GIS through the integration of multiple inputs and a broad class of 
algebraic rules into the calculation of flow related quantities. It is based on first establishing a flow field 
through DEM grid cells, or more generally model elements of any spatial discretization of the domain, by 
removing spurious pits and then proportioning the flow from a grid cell among downslope neighbors based 
on elevation. The flow field is required to be non-circulating, and as such these methods are applicable for 
flow problems related to the gradient of any potential field. Once a flow field is defined we show how it may 
be used to evaluate any mathematical function that incorporates dependence on values of the quantity being 
evaluated at upslope (or downslope) grid cells as well as other input quantities.  The definitions of flow 
algebra functions are thus recursive and allow the evaluation of concepts that extend the concepts captured by 
recursive calculations of weighted contributing area available in GIS, to a broad class of flow related 
hydrologic terrain analysis functionality. Flow algebra encompasses single and multi-directional flow fields, 
various topographic representations, weighted accumulation algorithms, and enables untapped potential for a 
host of application-specific functions.  While flow algebra expressions are recursively defined and most 
easily implemented using recursive functions, we describe here both recursive and non-recursive approaches 
to their evaluation.  We have used the non-recursive approach to develop implementations for parallel 
processing architectures thereby enabling the rapid processing of large datasets. 

We illustrate the potential of flow algebra by presenting examples of new functions enabled by this 
perspective that are useful for hydrologic and environmental modeling. A new weighted flow distance to 
stream function averages the "weight" moving through multiple flow paths from each point in the domain to 
the stream or other downslope reference point. This is an example of a general function which can 
specifically be used to estimate potential for sediment and nutrient filtering by streamside vegetation, by 
specifying vegetation cover as the weight. This function can also be used to provide a definition for 
connectivity in the context of multiple flow paths and identify areas that are connected to streams. Other new 
functions that examine elevations on upslope and downslope flow paths have been developed determine the 
average rise to ridge and drop to stream which together determine hillslope position useful for soil depth 
modeling. A new avalanche runout function determines the zone with downslope gradient greater than a 
critical angle (alpha) and is useful for mapping avalanche or potential landslide hazards.  

Software implementing the functions illustrated here is available as part of the TauDEM package: 
http://www.engineering.usu.edu/dtarb/taudem.  
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1. INTRODUCTION 

Terrain analysis based on digital elevation models (DEM) is being increasingly used in hydrology (e.g. 
Wilson and Gallant, 2000). There is rapid ongoing improvement of DEM data available due to the evolution 
of DEM acquisition techniques such as LIDAR (light detection and ranging) that are producing high-
resolution DEM data. We stand at a threshold of improvement in surface topography precision that provides 
both opportunities and computing challenges. High resolution data and increased computer power is leading 
to increased incorporation of terrain derivatives into analysis, in many fields, including hydrology. This paper 
contributes to methods for development of flow-related terrain derivatives that might enhance such analyses.  

This paper examines models for the representation of flow over terrain and presents new formalism for 
deriving flow-based information useful for hydrologic modeling. A basic underlying assumption is that water 
and its constituents move downhill. Terrain-based flow models enrich the information available from a DEM 
by deriving a structured digital representation of the flow field, which serves as the foundation for calculation 
of a wide range of flow-related quantities. The established procedure (Wilson and Gallant, 2000) of (1) 
removing pits, (2) computing flow direction, and (3) computing the contributing area draining to each grid 
cell establishes the basic information model. Contributing area is one of the first and simplest flow related 
quantities computed from a DEM. The earliest method for delineating channel networks used a support area 
threshold applied to the grid of contributing areas (O'Callaghan and Mark, 1984), and this is still widely used 
today.  In this paper the algorithm for calculating contributing area is generalized to include additional 
information and rules, and to produce additional spatial fields of interest. This generalized approach for the 
incorporation of rules into flow-related calculations is what we call flow algebra.  

This paper is organized as follows. Section 2 describes the terrain based flow data model that gives a digital 
representation of the terrain flow field as the foundation for flow algebra which supports the calculation of 
derivative flow related surfaces, presented in section 3. In section 4 we describe how this methodology, 
which although recursively defined, may be implemented in a non-recursive fashion for parallel evaluation. 
Section 5 gives examples that illustrate the capability of flow algebra and section 6 gives discussion and 
conclusions. This paper builds on our earlier work (Tarboton and Baker, 2008) where the concept of flow 
algebra was introduced. In the present paper we indicate how flow algebra constructs can be implemented 
using parallel computing and can be used to derive examples of additional hydrologic quantities useful in the 
modeling of soil depth. 

2. TERRAIN BASED FLOW DATA 
MODEL 

The terrain-based flow data model 
(Figure 1) comprises a digital 
representation of terrain and a 
representation of the flow field that 
connects adjacent model elements 
enabling the routing of flow over a 
terrain surface and providing the basis 
for terrain-based flow calculations.   

In grid DEMs, pits comprised of grid 
cells surrounded by higher-elevation 
neighbors occur due to deficiencies in 
DEM production processes (Jenson and 
Domingue, 1988; Jenson, 1991). Pits are 
generally interpreted to be spurious and 
drainage correction that removes pits is 
the first step in most analyses. Drainage 
correction alters the DEM to remove pits. Methods for drainage correction include pit filling (Jenson and 
Domingue, 1988; Jenson, 1991), breaching or carving (Garbrecht and Martz, 1997; Soille et al., 2003) and 
optimal pit removal (Soille, 2004). In an accompanying paper we present a parallel implementation of a pit 
filling algorithm (Wallis et al., 2009a).  

The most common procedure for routing flow over a terrain surface represented by a grid DEM is the eight-
direction method (D8) where the direction of steepest descent towards one of the eight (side and diagonal) 
neighboring grid cells is used to represent the flow field (O'Callaghan and Mark, 1984). Multiple flow 
direction methods that proportion the outflow from each element between one or more downslope elements 

Figure 1. Terrain based flow data model comprised of a) 
Digital elevation model, b) procedures for removal of pits (e.g. 
filling or carving), c) definition of a flow field specifying the 

connectivity between model elements; and d) flow based 
derivative surfaces. 

2001



Tarboton et al., Generalized terrain-based flow analysis of digital elevation models  

have been suggested as an attempt to resolve the limitations of D8 (Quinn et al., 1991; Tarboton, 1997; 
Seibert and McGlynn, 2007). The D-infinity (D∞) multiple flow direction model (Tarboton, 1997) represents 
flow direction as a vector along the direction of steepest downward slope on eight triangular facets centered 
at each grid cell. Flow from a grid cell is shared between the two downslope grid cells closest to the vector 
flow angle based on angle proportioning.  

All flow field methods assign or proportion flow from each grid cell to one or more of its adjacent neighbors. 
In grid DEMs the basic model element is a grid cell, but the same concepts can be applied to any set of 
topologically connected model elements. The flow proportions assigned to each downslope element are 
positive and should satisfy the conservation constraint: 

1P
j ij =  (1) 

where Pij is the proportion of flow going from element i to a neighboring element j and the sum is over all the 
neighboring elements. For the D8 grid model these proportions are either 1 (connected) or 0 (not connected). 
For the multiple flow direction models these proportions fall between 0 and 1 for each neighboring element. 
There is also a requirement that flow is non-circulating such that no portion of flow leaving one element ever 
returns to the same element after passing through one or more of its neighbors.  

Many measures useful in hydrologic and environmental modeling have been derived from this flow model 
(e.g. wetness index, Beven and Kirkby, 1979; erosion, Roering et al., 1999; contaminant transport, Endreny 
and Wood, 2003; and riparian buffers, Baker et al., 2006). Typically these measures have involved 
combining existing fields such as slope with outputs of an accumulation operation such as contributing area.  

3. FLOW ALGEBRA  

Once a flow field comprising a set of flow proportions for each model element is defined, it may be used to 
evaluate contributing area and other accumulation derivatives across a DEM domain. In the most general 
sense, the flow field derived from a DEM defines the surface connectivity between any two parts of a 
landscape. Given a flow field, the general accumulation function is defined as an integral of a weight or 
loading field, w, over a contributing area, CA. 

=
CA

dawA  (2) 

For a direct contributing area calculation, the weighting field, w, is set equal to 1. In an example calculation 
of streamflow from excess rainfall, the weighting field would be set equal to rainfall minus infiltration. 

Mark (1988) presented a recursive algorithm for evaluation of accumulation in the D8 case that was extended 
to multiple flow direction methods by Tarboton (1997) (Table 1). Numerically flow accumulation is 
evaluated recursively for each element as: 


>
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where i is a location in the field represented numerically by a 
model element such as grid cell in a DEM and Ai represents the 
accumulation at that element. The model element area is Δ and 
the notation {k:Pki>0} denotes that summation is over the set of k 
values such that Pki>0 (i.e., summing the contribution from 
neighboring elements k to element i). In other words, 
accumulated flow at any model element is the sum of flow arising 
from that element and flow arising from all contributing 
neighboring elements, each weighted according to the proportion 
of flow it contributes. This is a recursive definition because the 
accumulated flow for any model element depends upon the 
accumulated flow of adjacent upslope elements. Recursive definition includes a requirement that in tracing 
each path upstream, one must eventually arrive at a source element that has no other elements draining into it. 
This "termination requirement" is satisfied as long as the flow field is non-circular. Contributing area, as we 
have defined it in (2) and (3) above, is ill-posed for any flow field that includes looping.  

There is a generality to the recursive functionality described above: 1) multiple direction accumulations rely 
on weighted flow proportioning, whereas single direction accumulations are a special case where all flow 

Table 1. Pseudo-code for recursive 
accumulation algorithm. 

Global P, w, A, Δ 
FlowAccumulation(i) 
for all k neighbors of i 

if Pki>0 
FlowAccumulation(k) 

next k 


>

+Δ=
}0P:k{

kkiii

ki

APwA  

return 
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follows one pathway; (2) flow proportioning can occur to any number of neighboring model elements, so 
long as it conforms to the conservation constraint; (3) recursion can occur in both upslope and downslope 
directions; and (4) accumulations can be weighted by additional field(s) (e.g., rainfall minus infiltration). 
This capability, at least for upslope recursions, is available in flow accumulation functions in general purpose 
GIS software. However, we suggest here that recursive flow analysis need not be limited to the incorporation 
of additional weight fields into flow accumulation. Rather, what is needed is the ability to involve one or 
more additional fields in the accumulation functions that operate during the recursion according to a set of 
logical rules. We call these general rules for flow related calculations flow algebra. By generalizing the 
functionality of flow-field related calculations, we hope enable examination and use of additional flow-
derived measures in the analysis of hydrologic processes.  

Flow algebra logic exploits the recursive evaluation methodology illustrated in equation (3). Recursion serves 
to simplify the evaluation of a flow algebra function from its global or zonal integral definition, such as in 
equation (2), to a local evaluation where the function value at an element depends only on variables at that 
element and at either elements immediately upstream or downstream in the flow network, but not both at the 
same time. Flow algebra also generalizes the capability of zonal integral functions, enabling the evaluation of 
quantities that could not be defined in terms of a zonal integral because the result depends on both the flow 
field as well as local rules or additional value fields. We distinguish within flow algebra between simple 
input variables and variables with recursive dependence. Simple input variables or fields, denoted γ, are fully 
quantified before the evaluation of a flow algebra expression. Variables that have recursive dependence on 
the flow field, denoted θ, are quantified during the course of evaluating a flow algebra expression.  

In general, a flow algebra expression may be written as:  

θi = FA(γi, Pki, θk, γk) (4) 

The function FA may include any mathematical operators. In this expression θi is a vector that lists the 
recursive variables being evaluated at location i. γi is a vector of all simple input variables. Pki is a vector 
listing the proportion of flow from the first subscript element to the second subscript element, defined over 
all k for which Pki is non-zero. Pki represents the connections to neighboring elements. θk is a list of all 
recursive variables evaluated at each neighbor location k. γk is a list of simple input variables at each 
neighbor element k.  

For example, consider the problem of calculating runoff generation, where the input precipitation r, either 
infiltrates or runs off depending on a spatial infiltration or retention capacity, c. This could be accommodated 
in the present standard GIS flow accumulation method using a weight field, w=min(r-c,0) as input. However, 
now consider the effect of run-on. Runoff from upstream grid cells may have the opportunity to infiltrate 
downslope if the downslope infiltration capacity has not been exceeded. This cannot be evaluated using w as 
a weight for a standard flow accumulation.  Rather, a rule is required where the runoff from each grid cell, i, 
is qi=min(qin+ri-ci,0) where qin is the sum of runoff inflows from upslope. Using flow algebra this is evaluated 
by setting the vector θi=qi. In this case θ is a scalar at each grid cell, i. The vector of simple input variables γ 
includes r and c at each grid cell. The flow algebra function FA (4) is then defined as 
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A general recursive flow algebra algorithm is given in Table 2. In 
this pseudocode, FlowAlgebra is the recursive wrapper function, 
while FA is the functional flow algebra expression (4), of which 
(5) is an example, that is evaluated at each grid cell to implement 
the particular function being evaluated. FA may be as simple, or as 
complicated, as is needed, as long as it can be expressed in terms 
of simple and recursive input variables at a cell and its neighbors 
and that dependence on the recursive variables is in one direction 
only, i.e. either upstream or downstream. These are the general 
rules for this algebra formalism. The recursive variables, θk, 
appear on the right-hand side of the expression because evaluation of the expression at location i depends on 
the values for these variables at adjacent model elements (grid cells), either upstream or downstream. With 
this structure, both γ and θ fields can be used during the calculation of any quantity with recursive 
dependence. A flow algebra expression is either of type "upstream" or "downstream" depending on whether 
the functional dependence is on upstream or downstream quantities. Recursive dependence upon both 
upstream and downstream variability in the same expression is not allowed because such recursions would 

Table 2. Pseudocode for general 
recursive flow algebra algorithm. 

Global P, γ, θ 
FlowAlgebra(i) 
for all k neighbors of i 

if Pki>0 
FlowAlgebra(k) 

next k 
θi = FA(γi, Pki, θk, γk) 
return 
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not terminate. Downstream flow algebra is obtained by reversing Pki to Pik, but is otherwise similar to 
upstream flow algebra in all respects. 

Flow algebra expands upon the concept of map algebra available in popular GIS systems by including flow 
field operations. Map algebra involves point-by-point (cell-by-cell) mathematical operations between spatial 
fields. Flow algebra adds to this capability by incorporating operations based on the flow field and algebraic 
or functional descriptions of how the quantity being modeled is related to, and involved with, the flow field. 
Nothing in the formulation of flow algebra limits it to grids; it is applicable to any numerical representation 
of a flow field, including Voronoi polygons based upon a TIN discretization, or flow net model elements 
based upon a contour and flow line discretization as long as the underlying logical network connectivity 
between elements is non circular and can be represented by a set of proportions that satisfy (1). 

4. PARALLEL IMPLEMENTATION 

In order to evaluate a flow algebra expression for large grids in parallel, a method must be devised to 
partition the data across multiple processes. We have developed such a method for contributing area that is 
readily generalized to flow algebra (Wallis et al., 2009b). A striped partitioning scheme where the grid is 
divided horizontally into p equal parts and mapped to p processes, with any portion of the grid remaining 
being attached to the last divided portion, is used. Each process reads in their assigned portion of the DEM 
from a file, along with a row of cells directly above and below the assigned portions. This allows each 
process to have quick access to all neighboring cells without the need for any extra communication between 
processes. Before the function FA can be evaluated for a cell i, all of the cells in the region that drain into i 
must first be calculated. So that different cells can be considered simultaneously in different processes, a 
queue-based algorithm is used. Each parallel process independently evaluates its own partition as much as 
possible, accompanied by sharing of data between processes when needed. To achieve this, a dependency 
grid is created. The dependency grid contains, at each cell i, the 
number of immediate neighbors that drain into i. If there are no 
neighboring cells that drain into i, that cell is considered a peak 
of the DEM (and thus is not dependent on any other cell), so it is 
placed on the queue, allowing its flow algebra expression to be 
evaluated. If there is a neighbor that drains into i, the number of 
neighbors that drain into i is recorded in the dependency grid. 
This number is used later to determine when cell i is ready to be 
calculated. Table 3 gives the pseudo-code for building the 
dependency grid. Each process completes this phase in parallel 
with all other processes; no communication is necessary.  

Once the initial step has completed, each process contains a 
queue containing cells that are ready for evaluation and a grid 
filled with number of cell dependencies. Each process begins 
popping cells off the queue and evaluating the flow algebra 
expression. Then the dependency grid is decremented by one at 
downslope neighbors, n. If the dependency grid becomes zero at 
n, all cells upslope have been evaluated and the cell n is put on 
the queue. It is possible however that n may not pertain to a cell 
in the partition of that process, but rather to a neighboring one. In 
this case a dependency buffer that is used to facilitate message 
passing across processes is decremented. Upon completion of 
process queues, communication between processes is performed 
to swap dependency information and the procedure is iterated 
until all cells have been evaluated. Table 4 gives pseudo-code for 
the parallel flow algebra function. 

5. EXAMPLES 

Figure 2 illustrates the evaluation of infiltration capacity limited runoff generation with run on according to 
(5). Inputs are the r and c values indicated, with the proportional flow directions indicated by the arrows. 
Grid cells A and B on the left have no dependencies so may be immediately evaluated and using min(r-c,0) 
result in q=3 and 0 for grid cells A and B respectively. With these evaluated, the unevaluated dependencies of 
grid cell C become 0, so equation (5) can be evaluated for grid cell C.  The inflow to C is qin=0.6 x 3 = 1.8 
from grid cell B.  Then at C q=min(5-6+1.8,0)=0.8.  Now all dependencies of D have been evaluated.  

Table3. Pseudocode for building the 
dependency grid. 

Executed by every process with grid flow 
field P, grid dependencies D initialized to 0 
and an empty queue Q. 
FindDependencies(P,Q,D) 
for all i 

for all k neighbors of i 
if Pki>0 

D(i)=D(i)+1 
next k 
if D(i)=0 

add i to Q 
next 

Table 4. Pseudocode for parallel flow 
algebra function.  

Executed by every process with D and Q 
initialized from FindDependencies. 
FlowAlgebra(P,Q,D,θ,γ) 
while Q isn’t empty 

get i from Q 
θi = FA(γi, Pki, θk, γk) 
for each downslope neighbor n of i 

if Pin>0 
D(n)=D(n)-1 
if D(n)=0 

add n to Q 
next n 

end while 
swap process buffers and repeat 
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Inflows from cells A, B, and C, accounting for the proportions are 3 x 0.4 + 
0.8 = 2, so the runoff from D is q=min(4-5+2,0)=2.  

A natural measurement derived from any flow field is that of distance along 
a flow pathway. Specifically, we consider here the distance in a downslope 
direction from each model element to a target set, such as a stream or 
catchment outlet, though upslope distances may also be defined using an 
upslope recursion to obtain quantities such as the distance to a ridge. 
Average downslope distance may be determined using a flow algebra 
expression: 

  
{ }


≥
+=
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In this expression 'add' stands for an average distance downslope that needs 
to be initialized to 0 at the destination set of points (such as the stream). 
dist(i,k) is a generalized distance function between grid cells i and k that 
may quantify distance horizontally, vertically or along the slope (Figure 3). 

Similarly, average distance upslope may be determined using a flow algebra expression: 

 >+= otherwise 0 0,  P if  P/)adu)i,k(dist(Padu kikikkii  (7) 

In these functions dist may include a weighting factor to quantify the effectiveness of a buffer at, for 
example, preventing or filtering the sediment being carried to a stream. Figure 4 illustrates the buffer 
weighted potential distance to the stream. Note in this figure how the dark red colors are upslope of the area 
where the buffer around the stream is wide, while lighter reds occur where the buffer is narrow. These 
functions have been used in a study involving the modeling of soil depth based on topographic attributes 
(Tesfa et al., submitted 2008).  This study found that average vertical rise to the ridge plus a dimensionless 
vertical hillslope position quantity defined from a combination of the longest vertical rise to the ridge and 
drop to the stream improved the explanatory capability of the regression model used to predict soil depth. 

6. DISCUSSION AND CONCLUSIONS 

Flow algebra is based on a flow field established through (1) drainage correction involving the removal of 
pits, followed by (2) definition of the flow field through a general multidirectional proportioning of flow 
from a grid cell to downslope neighbors. The flow field is required to be non-circulating, and as such is 
suitable for representation of flow derived from the gradient of any potential field. Flow proportions arising 
from any element (grid cell) should sum to one to ensure conservation. Once this flow field is defined, a 
broad class of upstream and downstream recursive functions may be constructed. We have presented some 
examples for exploiting this capability including new techniques for addressing the measurement of flow 
distances and elevation drops. The new techniques have already been utilized in several distinct applications 
and they serve to illustrate the potential of the flow algebra approach. Although the examples we present 
have been developed using grid data structures, the logic of flow algebra is applicable for any set of logically 
connected elements defining flow in a non-circulating flow field. Further work is needed to test flow algebra 

Figure 4. Buffer weighted potential distance to 
stream. The buffer is indicated in brown/green 

while the weighted distance is in red. 

Figure 3. Types of distance measurements 
possible in add and adu functions. 

Figure 2. Example of 
infiltration capacity limited 

runoff generation accounting 
for run-on. 
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results, such as buffer weighted distance to the stream and runoff generation with run-on for their efficacy in 
representing physical processes. It would also be helpful to implement a symbolic system for definition of 
general flow algebra expressions to further facilitate evaluation of flow algebra functions in GIS.  

Software implementing the functions illustrated here is available as part of the TauDEM package: 
http://www.engineering.usu.edu/dtarb/taudem.  
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