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Abstract:   Valleys represent an important landscape feature for a number of environmental processes.  
However, the number of methods to reliably characterise them from digital elevation models (DEMs) is 
limited.  We have recently developed a method to characterise fuzzy memberships of a set of morphometric 
features from DEMs at both single and multiple operational scales, using only the parameters of a quadratic 
function fitted to the elevation values within a moving window (Wang et al., in press).  One of the 
morphometric features identified is multi-scale valleyness (MSV).  In this paper we demonstrate the utility of 
the MSV using a small catchment near Canberra, ACT, Australia, as an example.  The MSV results are 
compared against two flow accumulation algorithms (D8 and D∞) and the Multi-resolution Valley Bottom 
Flatness (MrVBF) index, each representing alternate approaches for characterising valleys.  The results 
indicate that MSV effectively characterises valley areas from DEMs, with its reliability being negatively 
correlated with terrain complexity.  The areas identified overlap with those of the other methods assessed, but 
also include areas not identified by these methods.  The MSV approach represents a potentially useful tool 
for environmental modellers who need to identify valleys from DEMs. 
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1. INTRODUCTION 

Valleys are an important morphometric landscape feature for environmental modelling.  For example, they 
are zones of transport for many materials, particularly fluxes of sediment and other entrained materials 
(Whiteway et al., 2004), they represent zones through which cold air drainage moves and provide shelter 
from winds blowing across the valley axis.  The characterisation of valleys from DEMs is an important step 
in environmental, hydrological and ecological modelling. 

There are a number of methods to identify morphometric features from elevation data stored in Digital 
Elevation models (DEMs) (see Wang et al., in press).  Common examples are focussed on peaks and pits, and 
are typically based on a set of rules that describe the shape of the terrain surrounding a point.  However, there 
are comparatively few methods available by which one can automatically identify valleys.  This is due in part 
to complexity.  Valleys can take a large variety of forms, from broad and flat with a low along-valley slope to 
long and thin with a steep along-valley slope.  It is therefore difficult to define a set of rules that can identify 
such variety. 

Two current approaches to identifying valleys are to use flow accumulation indices to identify channel 
networks (e.g. Matsunaga et al., 2009) and hillslopes from which valleys can be inferred, or to use the Multi-
resolution Valley Bottom Flatness index (MrVBF; Gallant and Dowling, 2003), which is intended to identify 
flat valley bottoms.  These methods are very useful.  However, they have been defined for specific uses, not 
for the general case of identifying valleys. 

Recently we have developed a method of extracting a set of morphometric features from DEMs that does not 
depend on complex rule sets (Wang et al., in press).  The method is based on fitting a quadratic surface to the 
elevation values in the DEM, from which indices are derived to describe the fuzzy memberships of the sets of 
peakness, pitness, passness, ridgeness and valleyness.  The method can be applied across multiple operational 
scales and reduces the need for complex rule sets. 

In this paper we demonstrate the utility of the multi-scale valleyness index (MSV) defined by Wang et al. (in 
press).  The MSV results are compared against two flow accumulation algorithms (D8 and D∞) and MrVBF. 

2. METHODS 

We now describe the general principles of the four methods used, and then the specific analyses used in the 
comparison. 

2.1. Flow accumulation algorithms 

Two flow accumulation algorithms are used in this research, D8 (O'Callaghan and Mark, 1984) and D∞ 
(Tarboton, 1997).  Both algorithms produce estimates of the upslope hydrological contributing area above a 
cell in a raster DEM.  D8 models only converging flow and allocates all of the flow through a cell to its 
steepest downslope neighbour.  D∞ models flow dispersal and convergence, with flow allocated on a 
weighted basis to two downslope neighbours. 

2.2. MrVBF 

The MrVBF algorithm (Gallant and Dowling, 2003) works on raster DEMs.  The Valley Flatness (VF) at a 
single scale is calculated as a function of (1) the local topographic position of a cell within a moving window 
and (2) the slope of a 3x3 cell window.  A cell is part of a flat valley when it is locally low and has a low 
slope.  Fuzzy VF values for multiple resolutions are calculated by resampling the DEM to increasingly coarse 
resolutions and repeating the procedure.  The MrVBF index is then a weighted combination of the individual 
VF values, with those VFs less than 0.5 considered as ridges and excluded. 

The main potential issue with the MrVBF algorithm is that it achieves a multi-scale result by using multiple 
resolutions, rather than multiple operational scales. The coarser resolutions obtained by resampling the 
original DEM will reduce the terrain information of the original DEM, although such smoothing can be 
desirable in some cases. 

2.3. The morphometric characterisation of valleys 

Details of the morphometric characterisation system are given in Wang et al. (in press).  In summary, the 
method uses least squares regression to fit quadratic surfaces of the form  to the elevation values within a set 
of moving windows ( FEyDxCyBxyAxyxfz +++++== 22),( ).  These surfaces are then identified as elliptic, 

parabolic or hyperbolic paraboloids, and are rotated such that the axes are parallel to the x and y axes to 
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simplify later calculations.  The centre point of an analysis window is defined as a member of a 
morphometric set based on the 
position of the axes of the paraboloid 
relative to the window, with four cases 
being specific to valleys (Figure 1).  
Single Scale Valleyness (SSV, the 
membership of the fuzzy set of 
valleyness at a single scale) is 
calculated as the complement of the 
distance of the centre point from the 
axes divided by the radius of the 
analysis window.  Multiscale 
valleyness (MSV) is calculated using a 
weighted combination of SSV values 
over a set of input scales. 

The least squares approach has two 
key advantages.  First, the R2 goodness 
of fit statistic can be calculated as an 
estimate of the reliability of the index 
at each scale.  Second, the 
morphometric parameters can be 
calculated for any location rather than 
only where there are sample values.  
This is a property shared with other 
moving window regression approaches 
(Fotheringham et al., 2002) and means 
that the method can be applied to 
DEMs of any data structure so long as 
the data can be extracted and used in 
the least-squares fitting. 

2.4. Analyses 

A DEM of the Dunns Creek catchment 
near Canberra, ACT (35°26’30S, 
149°8’30E, Figure 2) was used for the 
analyses.  The DEM was interpolated 
from spot heights, contour data (5 m 
interval) and channels digitised from 
the ACT 1:10,000 scale planning 
series maps. The interpolation used the 
ANUDEM algorithm (Hutchinson, 
1989), implemented in the TopoGrid 
Tool in ArcGIS Workstation version 8.  
The cell resolution is 10 m. 

D8 and D∞ were calculated using the 
TauDEM extension for ArcGIS 
(http://hydrology.neng.usu.edu/taudem
). 

MrVBF was calculated using an Arc 
Macro Language (AML) tool running 
on ArcGIS Workstation 9.2, provided 
by Dr. John Gallant from CSIRO Land 
and Water, Canberra, ACT, Australia. 
According to the algorithm, the first 
step uses a 3-cell radius window based 
on the finest resolution; the second 
step uses a 6-cell radius window based 

 

Figure 1.  Morphometric identification of valley points is based 
on an analysis of the mathematical shape of the local quadratic 

surface and its positional relationship with the analysis window.  
Valley candidates are identified by four cases based on the 

intersection of the axes defined by a conic section: (a) two axes 
of a concave-up elliptic paraboloid, (b) one axis of a concave-up 

elliptic paraboloid, (c) the concave-up axis of a hyperbolic 
paraboloid, (d) the axis of a concave-up parabolic paraboloid.  
The fuzzy membership of the set of valleyness is based on the 
distance from the centre of the circular analysis window to the 

nearest axis, relative to the window’s radius. 

 

Figure 2.  The Dunns Creek catchment (35°26’30S, 149°8’30E) 
has an elevation range of 260 m with two main valleys converging 
near its outlet at the south-west.  Steep ridges define the edges of 
the catchment in the north and south, with a broad saddle area in 

the north-east.  Drainage lines are discontinuous in the upper parts 
of the catchment. 
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on the finest resolution; and the radii of the remaining steps are all 6 cells with the reduced resolution DEM 
smoothed by a 3 by 3 cell window from the preceding step.  The AML script provided used six steps but was 
edited to use only four, as the fifth and sixth resampling steps would potentially introduce large edge effects 
for the DEM used here. The scales of this four step MrVBF process correspond to windows of 3, 6, 18 and 54 
cells radius. 

MSV and the associated R2 values were calculated using UNSWDEM software (Wang et al., in press). Four 
operational scales of radius 3, 6, 18 and 54 cells were used so that the MSV analysis windows corresponded 
to those used for the MrVBF calculations. The MSV value for each location was calculated from the SSV 
values using a linear power shape function with shape parameter of 1 and user weights of 1, 2, 4 and 8 for 
each scale respectively.  The selection of weighting functions has been explored for this DEM by Wang et al. 
(in press), with limited effect being observed for the simple valley forms. 
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where window radius }54,18,6,3{∈ir  and weight }8,4,2,1{∈iw . 

There are no reference data to define which locations are valleys in this data set.  In this case the results are 
compared against the drainage lines and elevation contours.  Differences between the methods were assessed 
visually using scatter plots and numerically using Pearson’s r correlation coefficients.  The D8 and D∞ 
results were adjusted for the correlation coefficient calculations using a log10 transform to reduce the effect 
of their right skewed distributions. 

3. RESULTS 

The D8 and D∞ algorithms characterise valley centre lines from DEMs (Figure 3).  They work well for 
identifying first and second order catchments, but not higher order catchments.  They do not characterise 
valleys as areas, especially the single flow direction algorithm D8.  Although D∞ uses multiple flow 
directions, the high contributing area values still only appear in a narrow area around the channels and show 
a sharp lateral decrease away from those areas. 

 

 

Figure 3.  Plots of the D8, D∞, MrVBF and MSV results. 
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The MrVBF results (Figure 3) show broad areas of 
high values, and thus identify valley areas.  The 
digitised channels are in the centre of these high value 
areas, indicating that the algorithm does well for 
characterising valleys from DEMs.  These areas are 
also concentrated in the areas for which it was 
developed.  For example, a large area with high 
MrVBF values occurs in the middle of the valley area, 
where the topography is comparatively flatter than the 
higher and lower parts of the catchment.  However, the 
MrVBF algorithm does not identify the valley areas in 
the steeper first and second order sub-catchments, nor 
the steep, narrow valley near the catchment outlet. 

The valley areas are clearly identifiable across the 
catchment in the MSV results (Figure 3).  The digitised 
channels coincide with the high MSV value areas, and 
the MSV index identifies valleys at all catchment 
orders.  The broad terrain features of the catchment 
from the broader scales are well represented without 
losing terrain details from narrower scales.  The large 
valley in the middle of the study area is well portrayed 
by high MSV values, while the local ridges of the 
small knolls in the valley area can also be clearly 
observed by the relative variation of MSV values.  
Numerically, the MSV values are also distributed 
across the range 0 to 1 (Figure 4), reflecting the 
mixture of valley and ridge cells in the study area. 

The MSV results are weakly positively correlated with the D8 and D∞ results (Table 1, Figure 4).  The 
correlation with D8 is 0.202, and with D∞ is 0.235.  MSV is more correlated with MrVBF, although the 
correlation is still not strong (0.557).  MrVBF and the two global algorithms are also only slightly positively 
correlated, being 0.183 for D8 and 0.159 for D∞.  D∞ and D8 are strongly positively correlated with each 
other (0.747).  The banding in the MrVBF plots is because ridges are excluded in the method. 

 

4. DISCUSSION 

The D8, D∞, MrVBF and MSV approaches characterise valleys using different principles and perform 
accordingly.  The flow accumulation algorithms perform well when valley centre lines are needed.  However, 
if the landscape is to be classified into different geomorphic zones then MrVBF and MSV are more effective.  
MrVBF performs well when characterising valley bottoms where the terrain is flat and low, for which it was 
designed.  In contrast, MSV characterises valley areas from DEMs regardless of whether the terrain is flat or 
not.  MSV is therefore more appropriate than MrVBF for characterising valleys in steep areas, and better than 
the flow accumulation indices when valley areas and not centre lines are needed. 

The MSV approach has the added advantage that some estimate of the reliability of the results can be 
obtained using the R2 surfaces for each individual analysis scale (Figure 5).  From this one can infer that the 
results of the 3 and 6 cell radii fit well across the whole study area, the 18 cell radii windows work well for 
most locations, with a notable exception being the small knoll in the lower part of the catchment 
(immediately above the confluence of the main channels).  By the 54 cell scale the fit is less reliable as the 
quadratic function is identifying the broad elevation trends but not the finer detail.  This can also be observed 
in the single scale valleyness plots (Figure 6). 

Table 1. Correlation coefficients of the four algorithms 

 MSV MrVBF D∞ D8 
MSV  1.000    

MrVBF  0.557 1.000   

D∞ 0.235 0.183  1.000  
D8  0.202 0.159 0.747 1.000 

 

Figure 4.  Scatter plots of each pair of MSV, 
MrVBF, D∞ and D8 algorithms.  The gaps in the 
MrVBF plots are due to the exclusion of values 

less than 0.5 in each component VF. 
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Figure 6.  SSV values at the four operational scales used. 

 

 

Figure 5.  R2 values for each SSV index.  Window sizes are radii. 
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One point to note about the MSV is that it does not differentiate between valleys of different shapes, for 
example those that are broad and flat versus those that are steep and narrow.  However, the use of the 
quadratic approach means that other geomorphometric indices can be derived to describe morphological 
properties for individual scales using the parameters of the quadratic surface.  Two examples are longitudinal 
and cross-sectional curvatures (Wood, 1996).  Specific types of valleys, for example flat valleys as identified 
by MrVBF, could be identified by first identifying candidates using the MSV index, followed by more 
specific analyses using geomorphometric indices. 

5. CONCLUSIONS 

The results indicate that the MSV approach effectively characterises valley areas from DEMs, with its 
reliability being negatively correlated with terrain complexity.  The areas identified overlap with those of the 
other methods assessed, but importantly these areas include those not identified by the other methods.  The 
MSV approach represents a potentially useful tool for environmental modellers who need to identify valleys 
from DEMs. 
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