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Abstract: We describe a method to extract patterns of local fish movement from acoustic tagging data in 
small scale surveys covering distances in the order of tens of kms.  The purpose of our analysis is two-fold: 
first, to provide a general insight into fish movement which allows us to approximately evaluate the 
efficiency of current local protected areas; second, to provide a statistical description of fish movement as 
input to ecological numerical models which can be used to evaluate alternative design for sanctuary zones.  

We analysed 3 months of data from 41 Spangled Emperors (Lethrinus nebulosus) in the Ningaloo Marine 
Park, in Western Australia. The data was collected via 38 acoustic receivers spread over an area of approx 
180 km2 covering roughly 5 different habitats typical of shallow water, reef environments.  

The frequency of fish detection from the acoustic receivers has a strong seasonal and daily pattern with 
detections decreasing at day-time and from December to February. Our initial analysis suggests that this is 
not the result of biological factors, rather of environmental factors (mostly waves due to sea breeze) and that 
the pattern of fish movement is mostly uniform during the sampled period.  

Using wind data from a nearby station we devised an approximate rule relating the effective variability in the 
receivers’ detection range with wind speed, which in turns is transformed into uncertainty on the fish position 
as a function of time. This has been further processed to generate a) the statistics of fish transitioning from 
one receiver position to another and b) a probability distribution of likely fish movement in un-sampled areas 
(outside the detection ranges) 

With this information we produced 2 types of maps. One map represents the probability of occurrence of 
Spangled Emperors at a given location in the studied area given only the measurements and their relative 
uncertainty. This can be considered as the information most constrained by the data. A second map represents 
the probability of occurrence assuming all fish use movement patterns extracted from the data, that is they act 
as agents trained on the measured data set. This can be considered as data extrapolation and is least 
constrained by the data. ‘Real’ fish movement, given the data at hand, may be expected to lie somewhere in 
between these two representations.  

By assigning receivers’ location to different habitats, from these two maps we extracted two probability 
distributions of fish movement from habitat to habitat. First results suggest that Spangled Emperors are 
mostly sedentary, which should facilitate the design of protected areas.   

Finally, this analysis has highlighted several possible improvements in data collection, receiver positioning, 
data analysis and algorithm design which are also discussed and which may lead to improved future surveys. 
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1. ANALYSIS OF DETECTION RECORDS 

In this section we analyse the spatial and temporal distribution of the tag detections with the purpose of 
establishing a rough approximation of the uncertainty in fish position as a function of time.   The survey area 
is shown in Figure 1, together with the delineation of different habitats. 

In  Figure 2 we can see the number of tag detections per hour over the survey period; we can notice that: 

• the average number of detections decrease from December to February; 

• hourly detections seem to follow an approximate quasi-periodic daily pattern.    

The first question we want to address is whether these two trends are due to environmental or biological 
factors, that is, whether they are the result of specific features in the fish behaviour or are due to external 
factors.  

We first note that the data in Figure 2 refers only to the fish which have been detected over the entire survey 
period, that is, the decrease in detections going from December to February is not due to loss of individual 
fish. Next, in Figure 3a, we show the histogram of the total number of tag detections at different hour of the 
day, over the overall survey period.  We can clearly see that most tag detections occur at night and that the 
minimum of detection occurs in the afternoon.  

An obvious question arising from these two figures is whether certain fish may behave differently in the 
afternoon compared to night time, for example certain individual fish may prefer to hide or migrate outside 
the studied area in the hottest hours of the day. To verify this we checked the number of individual fish which 
are detected at different hours of the day, over the overall survey period. This information is plotted in Figure 
3b; this is similar to Figure 3a, except that for each hour we plot the total number of individual fish detected 
rather that the total number of tag detections.  As we can see, Figure 3b shows much less variability than 
Figure 3a, that is the decrease in tag detections does not seem to be due to the decrease in the number of 
individual fish detected. This suggests (although does not prove) that the variability in tag detections during 
the day may be related to environmental 
factors rather than fish behaviour.  

A likely candidate may be the sea breeze: 
the resulting water turbulence can generate 
background noise as well as air bubbles 
(Pincock, 2006), which may affect the 
detection range of the acoustic sensors. 
This hypothesis may be further 
corroborated by Figure 4; it shows the 
number of tag detections per hour at 
different locations in the survey area: the 
sharp decrease in detections is evident 
everywhere except that in the channel area, 
that is in the area characterised by least 
amount of reef obstacles and deeper water, 
which may result in less turbulence and air 
bubbles.  

This inverse indirect relation between air 
temperature and tag detections (via sea 
breeze and water turbulence) may explain 
not only the short term daily variability but 
also the longer term decrease in detections 
between December and February. Other 
factors may also be at play however, including the growth of algae on the receiver sensor, or the batteries 
losing power. 

The relation between wind speed from a near-by station and tag detections has been carried out, suggesting a 
correlation between the frequencies of the two signals (not shown). However, it is clear that the relation 
between the two signals is complex, that other factors (wind direction, tidal waves for example) may play a 
role and that sophisticated statistical techniques are needed to establish a more reliable relation between the 

Figure 1. Visualization of the delimitation of the habitats.
Blue: Reef slope; Orange: Reef flat; Green: Mangrove area;
Purple: Channel; Pale yellow: Lagoon. 
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two variables. In the absence of further information, in this work we assume that wind speed is the main 
factor controlling tag detections.  

Background noise and air bubbles affect the number of tag detections by changing the detection range of the 
acoustic sensors, that is the size of the area around the sensor in which it is likely that a signal emitted by a 
tag is received and decoded correctly. Usually the detection range is known only under ideal, low background 
noise conditions and in our study can be assumed to be 300 m. Since we have a record of the average number 
of detections per hour, we can estimate an approximate relation between the wind speed and the expected 
detection range as follows: 
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where, DetectionRange(h) is the expected detection 
range at time h, MaxDetectionRange is 300 m in our 
study, MaxDetectionNumber is the maximum number 
of hourly tag detections we measured (which we 
assumed happened under the ideal conditions of 300m 
detection range) and DetectionNumber(h) is the 
number of tag detections at time h. Needless to say, 
this relation can be considered only as an 
approximation, but it has the benefit to circumvent the 
need to account for the actual wind speed in the studied 
area, which may not be available; it should be 
considered merely as a statistical relation which 
assumes that the number of expected tag detections is 
only a function of the detection range around the 
acoustic sensor.  

The purpose of Equation 1 is to provide an 
approximate bound of the uncertainty in fish position: 
when a tag is detected by an acoustic sensor, the fish 
may be anywhere within the detection range of the 
sensor. Under ideal conditions, a tag is more likely to 
be detected, but the area where the fish may be located 
is larger; under noisy conditions, it is less likely we 
detect a tag, but if we do, the fish position is known 
more precisely since the detection range is smaller. 
This information will be used to model the actual fish 
position and movement in the following sections.  

2. DATA DRIVEN FISH MOVEMENT STATISTICS 

In the previous section we obtained a general overview of the data at hand, their trends, the likely factors 
affecting their quality and quantity and their likely uncertainty. In this section we extract some simple 

Figure 2. Number of tag detection per hour during the survey period. We notice the average decrease
in detection number in February compared to December as well as a strong quasi-period daily
variability 

Figure 3. (top) Total number of detections for each
hour of a day, for the overall period by all
receivers. (bottom) Total number of fish detected
by all receivers, for each hour of a day, during the
overall period . 

(a) 

(b) 
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statistics of fish movement. The aim is twofold: first, we would like to estimate the likely position of each 
tagged fish at any given time; second, we would like to use the information on fish movement to train ‘virtual 

fish’ and simulate their behaviour in the studied area.    

As we have seen the frequency of tag detection varies 
considerably during the survey period. Consequently 
we decide to discretise the analysis in time over one-
hour intervals; this is justified by the fact that the 
average interval between tag detections over the 
entire survey period is roughly 30 minutes. In 
particular, at each hour, a fish position is assigned to 
the acoustic sensors where the fish has been most 
often detected; had the fish tag never been detected at 
that specific hour, the fish position is taken as 
unknown and assigned stochastically based on the 
previous and next hourly detection (see below).  

Once the data has been discretised, we generated 
three kinds of statistics for each fish: 

1. the transition probability from the detection 
range of one acoustic sensor to the detection 
range of another sensor; we store all hours at 
which a fish tag has been detected at a particular 

sensor (sensor A, say) and for which we also have a detection at the next hour (that is the position of the 
fish at the next hour is known). We then count how at many times the tag has been detected in the next 
hour at each surveyed sensor; by normalising this count we obtain a transition probability, for each fish, 
of going from sensor A to any other sensor. We then repeat this procedure for each sensor.   

2. The probability of ‘losing track’ a fish after 
seeing it at one acoustic sensor; for each fish, 
this is given by the counts of how many times a 
fish tag is not detected at any sensor, after 
seeing the fish at a specific sensor (sensor A, 
say) the previous hour. By dividing this number 
by the number of times a fish tag is seen at 
sensor A we obtain the probability of ‘losing 
track’ of a fish at sensor A.  This procedure is 
also then repeated for each sensor.   

3. The likely movement of a fish when it is not 
within any sensor’s range. Obviously we have 
no direct measurement of this behaviour. We 
thus sample all detected movements (that is all 
transitions sampled at point 1), both in terms of 
length and direction of movement and we 
generate a probability distribution. A fish 
movement outside any sensor’s range is then 
picked randomly within this distribution. This 
distribution inherently contains information 
about the likely fish speed. In order to make the 
movement statistics habitat dependent, a 
different probability distribution is generated 
for each habitat so that we allow fish to move 
differently depending on where they are within 
the studied area. 

3. DATA ANALYSIS 

In this section we analyse the distribution of likely 
fish positions which we obtain from the tag 
detections. There are two reasons why this can not 

 

Figure 5. Probability distribution of fish position
arising from tag detections and accounting for
location uncertainty and missing detections. 

 

Figure 4. Number of detections by some receivers
for each hour of a day, at 7 different locations, for
the overall survey period. 
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Figure 6. Probability distribution of fish position
arising from tag detections and accounting for
location uncertainty and missing detections. 

be obtained by a straightforward plot of the detection data: first, once a fish is detected by a sensor, the fish 
can be anywhere within the sensor’s detection range; second; a fish may not be detected by any sensor for a 
long interval of time, often spanning several hours, especially during the hottest hours of the day.  

The first problem is addressed by spreading the probability of finding a fish within a sensor’s detection range. 
In our case we used a 2D Fermi’s function (Reif, 1965) which 
reaches its maximum around the sensor location and decreases 
smoothly to zero at the border of the detention range; by suitable 
choice of parameters the decrease to zeros can be made as smooth as 
desired. The 2D integral of this function is then normalised to one to 
be converted to a probability distribution which effectively 
represents the constraints we have on the fish position, given a 
detection of its tag. The width if this probability distribution is given 
by the detection range of the acoustic sensor, which changes as a 
function of time as described above, to respect the uncertainty on the 
fish position due to the effect of the sea breeze. 

When a fish tag is not detected at a given hour, the fish position is 
constrained by a) when and where the fish was seen last, b) when 
and where the fish is seen next and c) the fish speed. Constraints a) 
and b) are addressed as described in the previous paragraph. 
Constraint c) tells us how far a fish could possibly be by both a) and 
b) at a given time.  

The resulting 
likely 

position of a 
fish at a given hour is then obtained by suitable 
iterative convolution of the likely position of the fish 
at the previous and next hour via a kernel represented 
by a Fermi function with width equal to the likely 
fish speed. The results can be seen in Figure 5.  

4. AGENT-BASED SIMULATION OF 
VIRTUAL FISH 

In the previous section we presented a probability 
distribution of fish presence at each location in the 
surveyed area which we obtained from the tag 
detections accounting for uncertainty in the fish 
position. This distribution is strongly affected by the 
location of the acoustic sensors: a fish could be seen 
at a location far from a sensor only if it could have 
transitioned through it in its path from one sensor to 
another.  In principle, there is no reason why a fish 
may not be equally likely to be present at a location 
far from an acoustic sensor.  

The purpose of the simulation we describe in this 
section is to account for this. Rather than using the 
tag detections as we did in the previous section, here 
we use the statistics described in Section 3 in order to 
‘train’ the movement of a set of virtual fish. We then 
‘release’ the virtual fish in the studied area and let 
them swim for a period of time equivalent to the 
survey period and store the locations they occupy at 
each hour. This is then turned into a probability 
distribution similar to the one presented in Figure 5. 

In particular the following steps are followed: 

1. a fish is released at a random location within the studied area; 

Table 1. Likely time spent by a fish 
within the sanctuary it has been 
released in 

Alternative 
Sanctuary 
design 

Permanence 

1 .52 

2 .35 

3 .51 

4 .35 

5 .64 

6 .40 

7 .63 

8 .46 
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Figure 7. Alternative sanctuary designs analysed by evaluating the probability of fish released in the
sanctuary to swim outside of it in a given time. 

2. movements occur hourly; 

3. if the fish happens to be within a receiver range, its next move is determined by the transition probability 
from the detection range of one acoustic sensor to the detection range of another sensor, as described at 
steps 1 and 2 in Section 3; 

4. if the fish happens to be 
outside the detection range 
of any sensor then a random 
movement is chosen 
according to the probability 
distribution of movement 
described at step 3 in 
Section 3; the movement 
depends on the habitat the 
fish is in, as described 
above. 

5. in order to account for 
uncertainty in the exact 
position of the fish, the 
actual location of the fish is convolved with the Fermi filter described above; 

6. at the end of the simulation the location occupied by the fish are normalised in order to produced a 
probability distribution.   

An example of simulation output, for 15000 fish, can be seen in Figure 6. Fish are now allowed to occupy 
locations where no acoustic sensor is located as it can be seen by the image. This image should be interpreted 
as an extrapolation of the sampled data to un-sampled locations, constrained by the data statistics. 

Table 2. Probability of fish moving between habitats 

Habitat Lagoon Reef 
slope 

Mangrove 
Bay 

Reef 
flat 

Channel 

Lagoon 0.8221 0.0285 0.0641 0.0545 0.0307 

Reef 
slope 

0.3664 0.4796 0.0300 0.0813 0.0163 

Mangrove 
Bay 

0.7369 0.0036 0.1197 0.0374 0.0135 

Reef flat 0.9276 0.0499 0.0902 0.1450 0.0343 

Channel 0.9246 0.0804 0.1075 0.1106 0.0578 
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5. SUITABILITY OF SANCTUARY ZONE DESIGN AND TRANSITION BETWEEN HABITATS 

The simulation technique described in the previous section offers a natural way to evaluate the suitability of 
alternative sanctuary zone designs. Given a sanctuary zone, we ‘release’ a number of ‘virtual’ fish within its 
boundaries and let them ‘swim’ for a given time. At the end of the simulation we calculate the amount of 
time these fish have spent inside and outside the sanctuary zone. A good sanctuary zone design is one which, 
everything else being the same, maximises the permanence of fish within it, consequently protecting the fish 
from fishing which occurs outside. 

In Figure 7, nine alternative sanctuary zone designs are shown. For each we calculated the amount of time a 
fish released in a sanctuary will likely spend inside the same sanctuary in a 3 month period and the results are 
presented in Table 1. 

Similarly, we can calculate the transition probability between different habitats, as shown in Figure 1, by 
releasing ‘virtual’ fish in one habitat and measuring the amount of time they spend in each different habitat in 
a given period. This is presented in Table 2. 

 

6. DISCUSSION AND CONCLUSIONS 

 

We have described an attempt to employ acoustic tagging data to extract information about fish movement. 
Unlike other studies, in this work the survey area was very small and specific information about short range 
movement was sought. The crucial components of our approach include a) estimating the detection range of 
the acoustic sensors as a function of environmental factors like the sea breeze, b) associating the time-varying 
detection range with the uncertainty on fish position, c) constraining the fish position when detections are 
missing by its likely swimming speed and the previous and next location of the detection, d) constraining the 
fish movement by storing occurrences of different possible movements and e) simulating the likely 
movement of ‘virtual’ fish by allowing it to move according to the sampled statistic in a Markov-like mode.  
Inevitably, this approach employs a number of algorithms and several heuristics, each of which could be 
changed affecting the outcome and more testing will be necessary to evaluate its effectiveness.  

We are aware of several limitations in our analysis. The most important is that we would expect the 
probability distribution of ‘virtual’ fish position in Figure 6 to be somehow smoother and less centered on the 
actual location of the sensors. We suspect the main reason for this result lies in an incorrect estimation of the 
likely detection range of the acoustic sensors and we plan to use additional data, as well as specifically 
designed sampling recently carried out, to improve on this crucial variable. Also, the results presented in this 
work relate to 3 months of data. Additional data has recently been collected and will soon be included in the 
analysis in order to further evaluate the method.  

 

REFERENCES 

 
Pincock, D. (2006). "Understanding the Performance of Vemco 69 kHz Single Frequency Acoustic 

Telemetry," http://www.vemco.com/education/range.php, ISSN. 

Reif, F. (1965). "Fundamentals of Statistical and Thermal Physics." McGraw-Hill, p. 341. 

 

 
 
 
 
 
 

2100




