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Abstract: We suggest that one of the main purposes of modelling is to explore the potential dynamical 
behaviours a system can display. Within this view, we aim to discriminate model behaviours which appear to 
be qualitatively different given a problem at hand. This approach fits nicely within a pre-cautionary approach 
to ecological and social problems aimed to inform policy-makers on the range of scenarios a policy may need 
to address.  

Numerical modelling is increasingly being used to inform policy-making with examples including resource 
management, biodiversity conservation, global warming mitigation and economic policy. The interpretation 
of modelling results thus has the potential to profoundly affect our environment and millions of people.  

Currently, there is an on-going discussion among modelling practitioners on what a model output represents, 
how it should be interpreted and what its overall scientific significance is: views cover a continuum between 
two extremes: one suggests that models can provide only a qualitative understanding of the modelled process 
and their output simply offers insight into general trends; another sees a model as a virtual laboratory in 
which real processes are roughly mimicked and whose outcome can be interpreted as predictions. 
Somewhere in between these views, a number of practitioners suggest that the purpose of modelling is to 
explore the potential behaviours a system can display. This is the framework we adopt in this work and we 
try to design an algorithm able to discriminate different model behaviours from a numerical model output. 

There are three main challenges in implementing this approach: the first one is how to define and 
discriminate different behaviours. This is clearly problem-specific and depends not only on the purpose of 
the analysis but also on the kind of output a model produces. We define a number of simple measures able to 
detect both local and global features in the model output and we discuss how the method could be extended 
to qualitative model output, that is a subjective evaluation of the model output performed by an expert user.   

The second challenge is how to detect different behaviours, which we address via a search in a high-
dimensional input space. Finally, once a set of different behaviours have been found, these need to be 
presented to the user and if many of such behaviours have been detected some sort of classification and 
simplification is also needed. We employ a Self-Organised Map to allow an approximate visual 
representation of our results. While these tools do not provide for an ‘exact’ analysis of the results, we 
believe they allow a potential decision-maker to obtain a rough picture of the variability and the range of 
behaviours policies may need to address. 

In general, the proposed approach should not be seen as an avenue to obtain firm problem-independent 
answers on a model behaviour, rather as a tool to highlight difference in model behaviours and provide their 
rough categorization. This information can then be used to guide a more focussed search of the model space 
aimed at answering problem-dependent specific questions in more details. Here we provide a proof of 
concept on a number of numerical models and discuss an extension to participatory modeling.  
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1. THE APPROACH – DETECTING LOCAL FEATURES IN A 2D EXAMPLE 

In this section I describe the numerical implementation of the approach via a working example: I employ a θ-
Ricker map as a population dynamics model and I simplify the analysis so that all steps can be easily 
visualised in 2D.  

I define the θ-Ricker map as in Ellner and Turchin (2005):  

tttt WNrNN σθ +−=+ )1(exp(1
      Eq 1 

where Nt is the population at time t, r is the growth rate, W is a normally distributed random variable with 
mean 0 and variance 1, and σ is the intensity of the additive noise.  

I aim to study the behaviour of the time-series (ts) generated by the θ-Ricker map (Rm in the following) as a 
function of a 2D input parameter space represented by r and θ, ( ),( θrRmts = ).  

For this application I also assume that we are not interested in the overall behaviour of ts, rather in some of 
its local features (extension to the analysis of global features is discussed in the following section). This 
addresses the classes of problems for which local extreme values or local trends are important.  

I assume I have a signal processing method which allows to extract local features from the time-series: in this 
work I embed ts in a 2D delayed-coordinate space represented by the pairs [tst,tst-1] (Takens, 1981; Kantz and 
Schreiber, 1999) and I call these extracted features in the rest of the document. This description leads to a 
natural way to define the difference between two extracted features as their Euclidian distance in the 
embedding space. 

I can now describe and visualise the procedure used to extract features of interest. This is divided into three 
stages: in the first stage I attempt to describe the most likely model behaviour, where likelihood is 

understood, albeit loosely, in a 
Bayesian sense: these are the 
features we expect to be present in 
the output of the model given our 
knowledge and expectation on the 
input parameter. In the rest of the 
document I call this ‘standard’ 
model behaviour.  In the second 
stage I actively look for model 
behaviours which are as different as 
possible from the standard one and I 
define the behaviours I find as 
‘anomalous’. Once again this should 
be understood within a Bayesian 
framework: these behaviours are 
anomalous only in relation of our 
previous knowledge of the model. 
Finally, in the third stage of the 
procedure I update our knowledge 
of the system behaviour by 
including the anomalous features 
into the set of standard ones and 

iterate, thereby adaptively expanding the scope of the search into the model behaviour space as well as 
redefining the understanding of the model and consequently the understanding of what represents standard 
and anomalous behaviour.  

1.1. Defining ‘standard’ system behaviour 

Problem-specific knowledge and experience may inform us on expected model behaviours and these can be 
represented as a collection of time-series generated by the model under expected input parameters. If this 
information is not available, we can run the model a number of times under random input parameters chosen 
within expected ranges and collect these time series. From these time-series I obtain a collection of extracted 
features as described above. In the case of the θ-Ricker map this results in a set of points in the 2D embedded 
space as can be see in Figure 1. 

Figure 1. Detection of ‘standard’ features in the θ-Ricker map; the 
red dots show the representatives selected by the clustering 

algorithm. a) 20 random points from the θ-r input parameter space; 
b) 2D delayed-coordinate feature space with all features extracted 

from the 20 time series; c) time series from which the 4 
representatives have been selected, and their locations along the 

time series themselves. 
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Figure 3. Final result of the analysis of the θ-Ricker map; a) a 
further ‘anomalous’ point (6) has been found while point 5 has been 

moved further away from the 4 ‘standard’ points; b) the final 
sampling of the parameter space is not uniformly spaced rather 

focussed on extreme values of θ and r; c) locations of the detected 
features along the time series they belong to..

Figure 1b shows the input parameter space of dimension θ, r containing 20 points used to generate 20 
random time-series. From the time-series I obtain the 2D extracted features displayed in Figure 1a which 
shows the feature space of dimensions tst,tst-1. The dark points show all features contained in the initial 20 
time series corresponding to the 20 input parameters in Figure 1b.   

In order to summarise the information contained in Figure 1a, I group the points into a number of clusters 
(for the choice of the number of clusters see the Discussion section). I carry out the clustering via the VSH 
algorithm (Frey and Delbert, 2007) and the cluster centres are displayed in Figure 1a as 4 large red dots. In 
our approach these cluster centres represent the ‘standard’ behaviour displayed by the Rm model according to 
the information so far collected.  Figure 1c shows the time series from which the extracted features have been 
extracted and the exact location of the cluster centres along these time series. The 4 extracted features seem 
to capture the structures contained in the time-series, which cover both average values (extracted features 1 
and 4) and ‘extreme’ values (features 2 and 3) like peaks, valleys and sudden jumps.  

To be consistent all extracted features in Figure 1b should be defined as ‘standard’; to do so, I take the 
maximum intra cluster distance 
and draw a circle around each 
cluster centre with radius equal 
to such distance. Obviously, by 
construction, all points found so 
far fall inside one of the circles 
or, equivalently, so far we have 
no information about the 
existence of any features outside 
the circles. I then define as 
‘anomalous’ features which fall 
outside such circles and I devise 
a procedure to search for those 
features. 

 

1.2. Detecting ‘anomalous’ system behaviour 

 

According to the definition in the previous section, searching for anomalous system behaviours coincides 
with searching for features in the extracted feature space which lie outside the circles in Figure 2a. We can 
carry out this search via a numerical optimisation method in which the cost function is the distance between 
one feature and the closest cluster centre (the cost function needs to be maximised). Since I expect that more 
than one such feature may exist, a natural choice is to use a population-base search algorithm and in this 
work I use a Genetic Algorithm (GA, see Davis, 1991) with a population size of 16 individuals (details of the 

specific Genetic algorithm used in this 
work can be found in Boschetti et al., 
(1996).  

After two iterations, the GA finds an 
anomalous feature, that is a feature not 
included within the ranges of the 
cluster centres as defined above. This 
feature can be seen as a yellow dot both 
in the extracted feature space in Figure 
2a and in the corresponding time-series 
in Figure 2c. It represents an extreme 
value of the time series which had not 
been seen previously.  

The presence of this new feature affects 
the optimisation process: first, it adds a 
new feature to the cluster centres and 
consequently it changes the shape of 
the solution surface. Second, I want the 
newly discovered anomalous features 

 

Figure 2. Detection of ‘anomalous’ features in the θ-Ricker map; a) 
point 5 (yellow dot) has been detected outside the range defined by the 
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to represent a new class of behaviours: if in the subsequent search another feature is found in the proximity of 
this anomalous feature, it will be disregarded if it is closer to a cluster centre than the anomalous features and 
it will replace it otherwise.  

The optimisation then proceeds in this new mode. Figure 3a shows the result after 20 iterations. Two items 
are worth noticing: first, a new anomalous feature has been detected (dot 6 in Figure 3a and in the time series 
in Figure 3b). Second, the anomalous feature 5 has been replaced by a new feature, similar to the previous 
feature 5 but further away from the original ‘standard’ behaviours (that is more ‘extreme’) than the previous. 

These two new extracted features add information to our previous knowledge of the system behaviour by 
informing us that larger values in the population dynamics are possible than previously thought. This 
information may have relevance for decision-making: if the modelled species was a pest, this result would 
warn us of a potential bigger threat than previously expected.  

As a final consideration, the plot in Figure 3c illustrates the sampling of the input parameter space carried out 
by the Genetic Algorithm; as can be seen the sampling is skewed, the search has guided the GA towards 
areas of the parameter space were anomalous behaviours are likely to be found, which in this case correspond 
to high values of both θ and r. 

This was a simple test case since the full range of behaviours of the θ-Ricker map could be easily discovered 
without the need of the specific state space exploration I described. The purpose of this test case was merely 
to illustrate the proposed approach. More challenging test cases are then discussed in the rest of the 
document. 

 

2. DETECTING GLOBAL FEATURES IN HIGHER DIMENSIONAL MODELS 

 

In this second example I employ a more complicated model, the NPZ model from Edwards and Brindley, 
(1999). This model is higher dimensional, which poses challenges in the visualisation of the results. Also, 
unlike the previous example, here I focus on the global structure of the output time series, rather than on local 
features; in particular, for global structure I refer to the ensemble of features present in a time series and 
develop a measure to evaluate how different two time series are based on these ensembles. Similarly to 
Boschetti (2008), the final aim is to determine how many different behaviours the NPZ model may display 
and roughly partition the input state space based on these output behaviours. To study the behaviour of the 
NPZ model I focus on the time series of phytoplankton biomass (Taken’s theorem (1981) guarantees that, 
provided I embed the time series in a sufficiently high dimensional space, the study of the phytoplankton 
biomass provides information about the overall behaviour of the NPZ system). 

As in the previous analysis of the θ-Ricker map, I embed the time series into a delayed-coordinate space. In 
this case I choose an embedding dimension of 7, which allows us to analyse longer structures and higher 
derivatives. Unlike the previous example however, I do not analyse the extracted features in isolation, rather I 
consider the ensemble of all the extracted features from an individual time series, which corresponds to a set 
of points in the embedded space. In order to carry out the algorithm as described in the previous section I 
thus need a measure of the difference between ensembles of extracted features rather than between individual 
extracted features.  

As before, I define this difference as a distance in delayed-coordinate space. This difference can be defined in 
many different ways: in Boschetti (2008) I used the difference between the statistical complexity (Crutchfield 
and Young, 1989; Shalizi and Shalizi, 2004) of the time series, which is calculated from the ensemble. Many 
other information-theoretic measures could similarly be employed (Kantz and Schreiber, 1999; Schreiber, 
2000; Ray, 2004). Most of these measures require the time series to be symbolised (that is discretised), either 
before or after embedding. As discussed in Daw et al., (2003) and Kennel and Buhl (2003) the symbolisation 
imposes an arbitrary distortion on the time series which I try to avoid in this work; consequently, here I 
define a distance which is based solely on the geometrical location of the extracted features in embedded 
space. Given two ensembles e1 and e2 of extracted features, the distance from ensemble e1 to ensemble e2 is 
defined as the mean distance from each feature in e2 to the closest among the features in the e1; to clarify: 

1) for each extracted feature f2i belonging to ensemble e2  
2) look for the feature f1j in ensemble e1 with shortest Euclidean distance | f1i , f2j |, call it di,j 
3) the distance from ensemble e1 to ensemble e2 is then defined as )( ,21 jiee dmeanD =→
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Figure 4. 12 different behaviours displayed by the NPZ 
model and their location on the SOM 2D representation of 

the model input parameter space 

In general, this distance is not symmetric, that is
1221 eeee DD →→ ≠ : the distance from the ‘more complex’ time 

series (which generates the ensemble with more diverse extracted features) tends to be shorter that the 
distance in the opposite direction. This measure can be interpreted as the amount of distortion we need to 
impose to ensemble e1 in order to reconstruct ensemble e2. This lack of symmetry is not a concern in our 
application since the clustering algorithm I adopt is able to account for it (Frey and Delbert, 2007).  

Given this distance, I can now proceed with the algorithm as described above. I run the NPZ model 40 times 
with random input from a 6 dimensional parameter space (the chosen input parameters are described in Error! 
Reference source not found.).  From these runs the clustering algorithm selected 4 time series summarising 
the ‘standard’ behaviour of the model.  I then run the GA for 260 further model run (13 iterations of a 
population of 20 individuals) looking for time series as different as possible from the currently stored time 
series. The algorithm found an additional 8 time series which I define as ‘anomalous’. To summarise, I 
sampled 300 points from the input parameters space, stored 300 time series and from them extracted 12 
which characterise the main behaviours arising from the model.  

 

In this test case both the input parameter 
and the feature space are high 
dimensional and consequently it is 
difficult to visualise the results. To 
circumvent the problem, I employ a self-
organised map (SOM), (Kohonen, 2001). 
A SOM maps vectors in a high-
dimensional space into a lower 
dimensional space (2D in our case) by 
respecting the vector neighbourhood 
topology, that is, by plotting along side 
points which are close in the original 
high-dimensional space. The result can 
be seen in Figure 4. The central plate 
shows the SOM U-Matrix (Kohonen, 
2001): this does not have a specific 
physical interpretation, which is why the 
axis re not labelled, rather it should be 
understood as the display of an 
acceptable arrangement of the 300 points 
sampled in the input parameter space 
such that their distance in the 2D plate is 

as close as possible to their distance in the original 6D parameter space. Over the U-Matrix I plotted the 12 
points in the input parameter space which generated the 12 time series detected by the search process; I 
interpret these 12 points as representative of the behaviour of the NPZ model and partition the U-Matrix by 
assigning the remaining points to one of these representatives according to their ensemble distance.  

In Figure 4 I plotted the time series corresponding to each of the 12 selected points, which shows the 
different behaviours we may expect from the NPZ model. In many applications it is also of interest to know 
what parameters are responsible for these different behaviours. Since I have sampled 300 values from the 
input parameters space I may employ this sampling to extract some rough information from them. I attempt 
to do this visually in Error! Reference source not found.. Following a method tested in several other studies 
involving searches in high dimensional spaces (Boschetti et al., 2003; Wijns et al., 2003a; Wijns et al., 
2003b; Boschetti, 2005; 2008), the value for each of the 6 input parameters is mapped over the U-Matrix and 
interpolated; this results in the 6 plates in Error! Reference source not found. which give us an approximate 
visual description of how each parameter varies in the domain characterised by different behaviours. 
Obviously, these plates are the result of a process prone to error: first points are arranged from 6D to 2D, then 
an interpolation is performed in the resulting 2D space which adds to the distortion; we thus can not expect 
an exact outcome from this analysis, rather only a rough impression which may lead us to insights for further 
analysis. This also will be further discussed below.  

Error! Reference source not found. suggests that the Predation on P (plate b) seems to be responsible for the 
partition between the behaviours in domains 1, 10 and 11 versus the rest of the domain. Similarly, plate e 
seems to suggest the role of concentration of N on the behaviour of domains 2 and 11.  Domains 3, 5 and 7 
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Figure 5. Values of each of the 6 NPZ model 
input parameters interpolated over the SOM 2D 

representation on the input parameter space 

seems to share fairly similar values in plates a, b and e, 
suggesting that their different behaviour may be due to 
the value of the parameters in the other plates, 
particularly c and f.  Similarly, the high value in plate 
c seems to be responsible of the behaviour in domain 
9. Because of the distortions in the generation of these 
maps these insights should not be taken as conclusive, 
rather may suggest directions for further enquire. 

 

3. EXTENSION TO PARTICIPATORY 
MODELLING 

In participatory modeling we may be less interested in 
the precise numerical output of a model, but it may 
still be on great interest to inform stake holders of the 
possible behaviours a system can display; the rationale 
may include designing policies in order to achieve, 

avoid or respond to certain outcomes. In this framework, modeling can be used to demonstrate how certain 
system behaviours may arise and also to reveal the potential for behaviours which may be unexpected or 
never before encountered.  

This could be achieved by involving human expertise directly in the analysis, interpretation and processing of 
the model output. As discussed in the introduction, our approach consists of three main components: the 
discrimination of novel behaviors, the search in the parameter space for new behaviors and the final 
visualization of the results. In a participatory modeling setting, the second and third components (search and 
visualization) can be carried out with no modification as described above. Human intervention could be used 
in the first component (the discrimination of behaviours). Let’s assume the modeling output consists of an 
image or an animation. By employing Interactive Inversion (see Boschetti et al, 2008, for applications to 
ecological modeling and references within for the general approach) the stake holders, together with the 
modelers, could perform a visual analysis of the model output and discriminate between standard and 
anomalous behaviors via joint discussion based of the accumulated experience on the system at hand.  This 
discrimination could then feed back to the Genetic Algorithm which performs the search in the model input 
space as described above. Basically the analysis of the model output space would be replaced by the 
intervention of the expert users (stake holders and modelers), while the rest of the approach would proceed as 
described above. The Genetic Algorithm would still be able to direct its search to promising areas of the 
parameter space (area which are likely to provide new anomalous behaviors) which the users would then 
further evaluate. Should this approach be followed, a crucial role would be played by the user interface in 
order to facilitate the users’ intervention, discrimination and feed-back of this information to the numerical 
algorithm. We can envisage a user interface enabling users to drag and drop model results into different 
classes according to behaviours judged ‘different’ according to the requirements of the problem at hand. 
These classes would then represent the clusters in the procedure described above in this paper, and the overall 
approach could proceed by processing these human-selected classes. This is the direction I intend to follow in 
future research.  

4. DISCUSSION 

The approach here described employs a number of algorithms. Most of them have been proposed in the 
literature to address problems for which a ‘best practice’ is not yet agreed on. These include the clustering 
algorithm, the global search algorithm and the dimensionality reduction algorithm. The same applies to a 
number of heuristics used: the choice of the number of initial clusters, the proper embedding dimension, the 
stopping criteria for each algorithm and so on. Obviously, each of these components could be changed and by 
so doing the outcome of the method could be affected; more testing is necessary to assess the robustness of 
the method in different applications. 

When the model is not deterministic, a given set of input parameters may result in different output values or 
time series. This can complicate all steps of the analysis: the definition of the clusters, the search in the model 
parameter space as well the visualisation of the results and the use of error bars to account for this may be 
beneficial, since they would provide a manager with an idea of how reliable the expectation of a certain result 
might be. So far, I have applied this approach only to model output in 1D representing time series of single 
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values. Extensions to 2D and 3D are in principle possible (Shalizi et al., 2004); they involve much heavier 
computation but they are useful only provided the output consists of sequences of profiles or images ordered 
in time (animations). Should the output not have this time component, issues may arise in implementing the 
algorithms meaningfully and care is needed (Feldman and Crutchfield, 2003). In particular, the problem of 
how to analyse static images is closely related to current applications in image processing, image recognition 
and artificial intelligence aimed at classifying large images data bases or recognise specific events requiring 
human attention, for example in surveillance.  

A natural approach to address this class of problem may involve algorithms similar to the ones used in this 
work: they could be used to first detect the interesting features in an image or animation, and then we could 
proceed with the method described above, focusing only on these features. Algorithms like neural networks 
could be trained by experts for specific applications in order to detect such interesting features. Needless to 
say this would increase the complexity of the approach, but improvements in image recognition and artificial 
intelligence are steady and may be soon relevant to modelling applications.  
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