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Water resources observation and prediction systems are being developed in the Australian Bureau of 
Meteorology to produce water information services, and will include rolling water balance estimation. A 
prototype Australian Water Resources Assessment Model (AWRAM) has been developed, and the nation-
wide coverage, currency, accuracy, and consistency required means that remote sensing plays an important 
role. This paper tests and discusses alternative methods of blending models and observations. Integration of 
on-ground and remote sensing data into land surface models typically involves state updating through model-
data assimilation techniques. By comparison, retrospective water balance estimation and hydrological 
scenario modelling to date has mostly relied on non-sequential parameter estimation against stream flow 
observations, and has made little use of satellite earth observation. The most appropriate model-data fusion 
approach for a continental water balance estimation system will need to consider the trade-off between 
accuracy gains when using more sophisticated synthesis techniques and additional observations, and the 
computational overheads this incurs. This trade-off was investigated using relatively simple but well-
performing lumped models of seasonal vegetation dynamics and catchment hydrology that are implemented 
in the prototype AWRAM, while formal inter-comparison experiments to assess alternative component 
model paradigms and structures are underway. 

The performance of different model-data fusion (MDF) approaches was evaluated using flux tower ET 
measurements at four sites in Australia together with satellite observations of soil moisture over the 
corresponding area (AMSR-E passive microwave instrument). These observations, rather than hydrometric 
observations (e.g. streamflow), were chosen because of the more direct relationship they have with the site 
water balance over shorter time scales. Satellite-observed vegetation vigour (MODIS Enhanced Vegetation 
Index, EVI) was the assimilated variable. The MDF techniques tested include non-sequential estimation of 
model parameters (calibration against EVI, ET or both) and scaling of rainfall inputs, as well as sequential 
updating of leaf area index or soil moisture content using the ensemble Kalman filter. Non-sequential 
parameter estimation did not appear to provide much benefit compared to using prior parameter estimates, 
suggesting that the model parameterisation was comparatively robust and parameter values spatially 
invariant, at least when compared to errors in forcing data. A combination of parameter estimation and state 
updating did lead to improvements in some aspects of evaluation; reducing the apparent error in monthly 
evapotranspiration by 1% and in monthly top soil moisture content by 12%, respectively, when compared to 
using a priori parameter estimates. However it was also about three orders of magnitude more 
computationally intensive. Rainfall input adjustment was only tested in a relatively crude, non-sequential 
manner but results were encouraging, and appear to be a promising candidate for sequential approaches. 
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1. INTRODUCTION 

Water resources observation and prediction systems are being developed to produce water information 
services as part of the Australian Bureau of Meteorology’s new statutory role. It will include rolling water 
balance estimation to underpin national water accounts, and water resources assessments that interpret 
current water resources availability and trends in a historical context. A prototype Australian Water 
Resources Assessment Model (AWRAM) has been developed (Van Dijk et al., in review). The nation-wide 
coverage, currency, accuracy, and consistency required means that remote sensing plays an important role, 
along with in-situ observations.  

There are different approaches to blending models and observations (Barrett et al., 2008). Some common 
choices include: [1] the observations that are to be blended in and its implications for the model structure 
(e.g. coupled water-energy balance simulation to assimilate land surface temperature observation; dynamic 
vegetation cover development simulation to assimilate vegetation observations); [2] estimation of model 
simulated states (stores, fluxes) versus model inputs (e.g. rainfall scaling) or model parameters; [3] sequential 
approaches (i.e. updating model estimates at each time step an observation is available) versus non-sequential 
approaches (i.e. single set of parameter estimates that minimise observation-model mismatches over a 
period); [4] the sophistication of methods used, from very simple (e.g. direct insertion or statistical 
correction) to more complex and computationally intensive methods requiring generation of ensembles (e.g. 
particle or ensemble Kalman filters), many iterations in a search for an optimum solution (global search 
algorithms), or calculation of the model Jacobian with respect to the target variable (e.g. variational 
methods). Integration of on-ground and remote sensing data into land surface models in atmospheric 
applications typically involves sequential assimilation approaches. Streamflow forecasting typically involves 
direct insertion or bias correction, although more sophisticated assimilation approaches are increasingly 
being used. By comparison, water balance estimation and hydrological scenario modelling to date has mostly 
relied on non-sequential optimisation of (time invariant) model parameters.  

The blending of remote sensing data into water balance models is still in early stages of development. To 
determine an appropriate model-data fusion approach for continental water balance estimation, the trade-off 
between computational overhead and the gain in accuracy needs to be considered. This paper investigates this 
trade-off by trialling some alternative model-data fusion approaches, using a landscape hydrological model 
and satellite-based estimates of soil 
moisture and vegetation properties 
for four Australian sites.  

 

2. MODEL 

The prototype AWRAM uses 
relatively simple but well-
performing lumped models of 
catchment water balance (OCCAM) 
and seasonal vegetation dynamics 
(EGG) as interim solutions (Van 
Dijk et al., in review). Formal inter-
comparison experiments to assess 
alternative component model 
paradigms and structures are 
underway and will lead to future 
improvements.  

2.1. OCCAM water balance 
model  

Van Dijk et al. (in review) analysed 
daily streamflow data for more than 
284 headwater catchments 
(50−2000 km2); interpolated station 
rainfall and climate data; and 
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Figure 1. Illustration of the OCCAM model structure. Shown are model 
components (rectangles), model input time series (pink), the six free 

model parameters  (see text). Internal fluxes and outputs (blue circles) are 
storm runoff (R), quick flow (QF), net infiltration (In), evapotranspiration 

(ET), drainage (D), baseflow (BF), total streamflow (Q). Storages 
(yellow) are soil water (Ss), groundwater (Sg) and runoff (Sr). 
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observations of vegetation vigour by the MODIS sensor aboard the Terra and Aqua satellites. Streamflow 
data were processed to obtain estimates of baseflow and storm flow (or quick flow). For each component of 
the water balance several candidate model structures were derived from theory and literature. Separate 
analyses were performed to develop model components describing baseflow dynamics, surface runoff 
generation, evapotranspiration (ET) and soil water drainage (Figure 1). Alternative model structures were 
compared to the data, and  Akaike’s Information Criterion (Akaike, 1970) was used to determine the 
structures representing the optimal trade-off between the number of free parameters and explanatory power. 
The composite model was named OCCAM (for ‘Optimum Complexity CAtchment Model’). 

The model has three input data sources, all required at daily time step: the Enhanced Vegetation Index (EVI), 
potential ET (E0) and precipitation (P). Excluding the ET model component, the model has six ‘free’ model 
parameters that are allowed to vary between catchments. These describe: infiltration excess runoff (parameter 
kP), saturation overland flow (CSg), storm flow recession (kQF), soil water storage at field capacity (SFC),  
drainage rate at field capacity (fDFC), and baseflow recession (kBF). Analyses were performed to assess how 
accurately these parameters can be estimated based on covariance with catchment attributes and spatial 
correlation, and predictive regression equations were developed accordingly.  

The ET estimation component has no free parameters as such; instead a single set of seven parameters was 
optimised across all catchment data available. The seven parameters include: two parameters are related to 
the contribution of the aerodynamic component of total evaporative energy; two for the relationship between 
EVI and surface conductance; two for the effect of atmospheric vapour demand on surface conductance; and 
one defines the maximum amount of near-surface water available for evaporation from the soil and wet 
canopy. EVI was chosen as a predictor of ET in preference to derived products (e.g. leaf area index or 
vegetation fractional cover); there are plant physiological arguments to assume that EVI provides a better 
integrated measure of canopy scale surface conductance. An example is the known relationship between leaf 
chlorophyll content (greenness) and stomatal density (surface conductance per unit LAI). A previously 
published ET estimation method using a similar approach (Guerschman et al., 2009) showed a bias of plus or 
minus ~15% over longer periods when compared to flux tower and catchment water balance estimates of ET. 

2.2. EGG dynamic vegetation model 

The Equilibrium Greenness Growth 
(EGG) model used here simulates 
vegetation dynamics by calculating the 
EVI that could be sustained given soil 
moisture availability. The equilibrium 
EVI is determined by considering the 
hypothetical EVI leading to a maximum 
transpiration rate (Et,max) that equals 
maximum root water uptake (Umax) under 
transient soil moisture conditions. The 
vegetation moves towards this equilibrium 
state with a prescribed degree of inertia. 
The model can include one or more land 
cover types, each defined by their 
fractional cover and properties. Currently, 
two land cover types are considered: 
deep- and shallow-rooted vegetation. The 
primary output is EVI although this is 
internally linked to leaf area index and 
canopy fractional cover.  

Unlike streamflow data, EVI data to calibrate and constrain the dynamic vegetation model are available with 
near complete temporal and spatial coverage, the need for parsimony in parameterisation is less severe, and 
the number of parameters was allowed to be larger to increase flexibility in calibration. There are seven 
parameters for each land cover type, describing the relationship between soil water content and root water 
uptake (three parameters), between EVI, canopy cover, and LAI (two parameters), and describing the relative 
rates of canopy adjustment (two parameters).  
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Figure 2. Illustration of the Equilibrium Greenness model. Symbols 
as in previous figure, with additional green elements showing the 
model components that are internal to the Equilibrium Greenness 

model. The red and blue arrows show feedbacks between the models 
within and between time steps, respectively. 
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3. DATA   

The coupled OCCAM-EGG model only requires precipitation and E0 as inputs. Interpolated station rainfall 
data are available through the SILO service. Priestley-Taylor E0 was produced using interpolated climate 
station data of temperature and shortwave radiation, and albedo climatology derived from remote sensing 
(see e.g. Guerschman et al., 2009 for details on these data). Both were available as daily data at 0.05° 
resolution. The period 2000−2006 was used in all analysis. The assimilated variable in this study was EVI 
calculated from 1km MODIS reflectance data using the processing methods described in Guerschman et al. 
(2009). Soil moisture of the top few centimetres of soil (θ, in m3 m−3) can be retrieved using passive 
microwave remote sensing of soil moisture. However these retrievals are relatively noisy, of relatively coarse 
resolution (>25 km), and the signal source depth is not clearly defined (but most likely <5 cm). These 
features make assimilation more challenging and therefore at this stage soil moisture observations were only 
used for evaluation. The θ data used was retrieved from AMSR-E brightness temperatures using methods 
described in Owe et al. (2008) and made available by VU Amsterdam (see also Draper et al., 2009). Daily 
flux tower ET estimates were available from four sites: Howard Springs (HoSp) in open forest savannah near 
Darwin, NT (August 2001−August 2006; J. Beringer, Monash University, Melbourne); Kyeamba (Kye) in 
open grazing land in southern NSW (January −December 2005, J. Walker, Melbourne University); 
Tumbarumba (Tumb) in wet open sclerophyll forest in southern NSW (February 2002−April 2005; R. 
Leuning, CSIRO); and Virginia Park (ViPa) in open woodland savannah in Queensland (July 2001−February 
2003; R. Leuning, CSIRO). The time series of EVI and θ were derived by taking the pixels covering the flux 
tower location. 

4. METHODS 

4.1. Prior parameter estimation 

The six free OCCAM catchment parameters were estimated from long-term average rainfall and PET 
statistics using  regression equations (Van Dijk et al., in review). A single set of seven ET model component 
parameters was calibrated against long-term average ET estimates derived from average rainfall and 
streamflow for catchments with sufficient data available (N=199). Fractions of deep-  and shallow-rooted 
vegetation were estimated from 20-m resolution ‘woody vegetation cover’ data based on Landsat TM 
mapping (NFI, 1997). The seven parameters of the EGG model for both cover types were derived by visual 
calibration of parameter values against EVI observations for the flux tower sites and a subset of catchments. 
Subsequently, the median of visually fitted values across sites and catchments was used as the prior 
parameter estimate (that is, values were the same for all four sites). These prior parameter estimates can not 
be seen as fully independent from the EVI observations, but they are independent from the flux tower ET 
observations.  

4.2. Model-data fusion approaches  

Nine approaches were tested as described in 
Table 1. During the visual fitting process, it was 
found that six out of the fourteen of EGG 
parameters had more influence on simulated 
states and fluxes than the remainder. Only these 
six parameters were therefore used to test 
alternative parameter estimation approaches 
(PV, PKL, PKS, PE, PEV). The adjustment of 
rainfall estimates (PP) was treated as a non-
sequential parameter estimation problem: a 
single parameter was used to linearly scale the 
daily rainfall time series. The objective function 
chosen for optimisation was the Nash-Sutcliffe 
Model Efficiency (NSME) in explaining 16-day 
EVI averages, except for PE and PEV. For the 
former, the objective function used was the 
NSME for monthly average ET, whereas for the 
latter, the product of the NSMEs for EVI and 
ET was used. Optimisation was done by random 
hypercube sampling in three steps, starting with 

Table 1. Model data fusion approaches evaluated. 

AP A priori parameter estimates (identical for all sites). 

PV non-sequential estimation of the six most sensitive 
EGG parameters by calibrating against EVI. 

PP non-sequential estimation of a rainfall scaling 
coefficient by calibrating against EVI. 

KL sequential updating of leaf area index (LAI) using 
prior parameter values (note that LAI and EVI are 
directly related in the model and therefore 
effectively amount to the same). 

KS sequential updating of root zone soil moisture 
content (Ss) using prior parameter values. 

PKL PV followed by sequential updating of LAI. 

PKS PV followed by sequential updating of Ss. 

PE non-sequential estimation of the six most sensitive 
vegetation parameters, by calibration against flux 
tower ET observations. 

PEV non-sequential estimation of the six most sensitive 
vegetation parameters, by calibration against EVI 
observations and flux tower ET observations. 

3757



Van Dijk and Renzullo, Alternative model-data fusion approaches for retrospective water balance estimation  

the full feasible parameter range and in subsequent steps narrowing down to 50% and 20% of the feasible 
parameter range around the best estimates. The number of random samples in each step was set at 3n (i.e. 128 
draws for n=6 parameters). In all cases, the model was ‘spun up’ for the first two years of the period. 

Sequential updating was undertaken using the Ensemble Kalman filter (EnKF). Four variations were tested 
(KL, KS, PKL and PKS). Prior estimates were used for the uncertainty in EVI observations (estimated at 
±0.05 from high frequency variation in the data) and model EVI estimates (somewhat arbitrarily estimated at 
±0.1). In all cases, 100 ensemble members were used and updating was done each time a new EVI 
observation became available (typically every 16 days, but depended on cloud cover). It is noted that the PE 
and PEV strategies are only feasible where flux tower ET measurements are available and therefore not a 
realistic approach for continental application. They were included only as ‘control’ cases providing an 
indication of the performance that can be achieved where such observations are available, and perhaps to 
identify any model structural issues. 

4.3. Evaluation 

The performance of alternative strategies was evaluated by comparison against the daily values and monthly 
averages of observed EVI, ET and θ. A seven-day median filter was applied to both observed and model 
simulated θ to remove some of the noise in the former caused by nonaligned footprints, atmospheric 
contamination and retrieval model uncertainty. Indicators of estimation accuracy used were (1) the absolute 
and relative bias between period average values (2) the fraction of unexplained variance (FoUV; the 
complement of correlation coefficient, 1–r2), and (3) the standard error of estimate (SEE). 

5. RESULTS 

5.1. Indicators of performance 

The agreement between observed and estimated EVI, ET and θ is illustrated in Figure 3, showing average 
relative bias (but without considering the direction of bias), FoUV and SEE averaged across the four sites. 
The prior model parameter estimates (AP) provide very reasonable estimates of EVI (when compared to PV 
and PEV), but more importantly also provide good estimates of ET (when compared to PE and PEV). 
Parameter optimisation increases model performance for the observation used for calibration, which was 
expected because the objective function NSME is directly related to SEE, whilst bias and FoUV are likely to 
be correlated. Compared to the prior parameter estimates (AP), calibration against one observation slightly 
deteriorates performance in estimating the other: calibration against EVI (ET) using approach PV (PE) leads 
to greater error in ET (EVI). Rainfall scaling (PP) does not produce better estimates of any of the 
observations on average (but see further on).  

The sequential approaches (KL, KS, PKL, PKS) use EVI observations in updating and therefore for these 
EVI agreement is not an objective indicator of performance. If prior parameters are used (KL, KS), state 
updating produced considerably worse ET estimates, but better θ estimates. If PV parameters are used, LAI 
updating (PKL) produces a slight improvement in SEE and FoUV for ET (from 5.8 to 5.4 mm/mo and from 
0.13 to 0.12, respectively) but a greater bias (from 10 to 17%). Soil moisture estimates are better than for any 
of the other approaches. Updating of Ss (PKS) appears less effective than updating LAI (PKL) on all counts. 
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Figure 3. Indicators of estimation uncertainty for alternative model-data fusion approaches for three observation types. 
Smaller circles closer to the bottom left corner indicate desired performance; the area of the circles is proportional to the 
unexplained variance, varying between (a) 11–61%, (b) 11–17% and (c) 60–62% (note the truncated axes in this panel). 

Acronyms are described in the text; the shaded circles indicate approaches feasible at continental scale. 
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5.2. Differences between sites 

Agreement in ET for the four sites separately is illustrated in Figure 4. Results generally reflect those 
discussed earlier. Overall, the common set of prior parameter estimates produced remarkably good 
performance, suggesting that the calibrated model parameters are relatively invariant between sites. 
Calibrating model parameters against observed EVI rather than prescribing values (PV vs. AP) does not 
always reduce SEE and bias. Similarly, LAI updating does not always lead to improved ET estimates (PKL 
vs. PV); even less so when prior parameter estimates are used (PKL vs. AP). Biases tend to have equal sign 
within a site regardless of the method. Comparing across sites, rainfall input scaling (PP) appeared to result 
in generally similar or perhaps even slightly better performance than vegetation parameter optimisation (PV). 

6. DISCUSSION  

6.1. Merit of alternative MDF approaches  

The apparently modest gains achieved through any of the model-data fusion approaches when compared with 
prior parameter estimates was surprising. The influence of errors in the forcing data and errors in the model 
structure should be considered here, and there may also have been issues of representativeness between the 
site measurements and the satellite pixel. Calibrating the model parameterisation generally led to somewhat 
better agreement with the target observations, but deterioration against other observations. This may indicate 
a degree of ‘over fitting’ to compensate errors and bias in the observations. It does not explain why state 
updating with prior parameter estimates performed worse than state updating with calibrated parameter 
values. Overall, most approaches showed similar biases when compared to ET observations. State updating 
that brought modelled EVI in closer agreement with observations also improved agreement with θ slightly. 
We speculate that this is primarily because of errors in the gridded rainfall inputs. As the model accounts for 
soil water, such errors can have a considerable influence on the magnitude and timing of simulated EVI, ET 
and θ under water limited conditions. Differences in estimated versus observed rainfall and ET indeed 
showed some consistency in biases: average SILO rainfall varied by –13%, +4%, –16% and –2% from site 
rainfall (at HoSp, Kyem, Tumb and ViPa, respectively), whereas model ET varied by –4%, +1%, –15% and 
–17% from observations. The relatively good performance of rainfall scaling (PP) in reproducing ET 
estimates, and in particular the smaller bias for some of the sites, may provide some support for the 
importance of rainfall errors. However, the resulting adjusted rainfall estimates were generally worse than the 
SILO estimates; varying by +25%, –3%, –33% and –29% from tower observations. This is not surprising 
considering the rather crude uniform scaling method applied. Rainfall input adjustment was only tested in a 
relatively crude, non-sequential manner but results were encouraging, and would appear a promising 
candidate for sequential approaches, particularly when considering the additional information about rainfall 
contained in remotely sensed soil moisture and land surface temperature dynamics. 

6.2. Trade-off between performance gain and computational overhead 

In this application, the computational overheads of alternative MDF approaches increased from using prior 
parameter estimates (AP, a single run of ~2x103 model evaluations), Kalman filter approaches (KL, KS, 100 
ensemble members each day producing ~2x105 model evaluations) and non-sequential approaches (PV, PE, 

a)

0

10

20

30

HoSp Kyem Tumb ViPa

S
E

E
 o

f E
T

 (
m

m
/m

o
)

PE PEV AP PV PP KL PKL

 b) 

-200

-100

0

100

200

300

HoSp Kyem Tumb ViPa

E
T

 b
ia

s 
(m

m
/y

)

PE PEV AP PV PP KL PKL

 

Figure 4. Indicators of estimation uncertainty for five of the eight alternative model-data fusion approaches compared to 
observed monthly ET: (a) unexplained variance, (b) annualised average bias between estimate and observation.  
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PEV, PP – three times 128 the full period, i.e. ~8x105 model evaluations), to combined parameter estimation 
and state updating (e.g. PKL and PKS, in the vicinity of ~106 evaluations). It is noted that 100 ensemble 
members may be towards the upper end of commonly used ensemble size, whereas 348 parameter samples is 
perhaps towards the lower number of iterations needed when optimising six parameters (though more than 
necessary when optimising one parameter as for PP). The only approach that reduced SEE in monthly AET 
and θ (by –1% and –12%, respectively, when compared to method AP) was the combined parameter 
estimation-state updating approach (PKL) that was also one of the two most computationally intensive. 

Whether implementation of this approach is practically achievable depends on the application. It was 
practical for this study (taking minutes), but a single run for the same period across the Australian continent 
(7.7·106 km2) at the 250-m MODIS EVI resolution would create ~4·1011 calculations per run. This by itself is 
still within the realms of current computing power, for example some of the more involved weather 
prediction systems perform tasks of similar magnitude within a few hours on super computers. However the 
combined parameter estimation and state updating approach tested here would increase computational load 
by about three orders of magnitude and become impractical. Computing speed will almost certainly continue 
to increase, and considerable efficiencies can probably be found in practice; this is subject of further research.  

7. CONCLUSIONS 

Several model-data fusion approaches were tested using a coupled catchment water balance and vegetation 
dynamics model. The performance of alternative model-data fusion approaches was evaluated using flux 
tower ET measurements at four sites in Australia and satellite observations of soil moisture over the 
corresponding area (AMSR-E passive microwave instrument). Satellite-observed vegetation vigour (MODIS 
EVI) was the assimilated variable. Non-sequential parameter estimation did not provide much benefit over 
the use of prior parameter estimates, suggesting that the model parameterisation was comparatively robust 
and parameter values spatially invariant by good approximation. A combination of parameter estimation and 
state updating did lead to improvements in some aspects of evaluation, but the computational costs were 
about three orders of magnitude greater. Further research is planned to try and find more computationally 
efficient ways of achieving a similar result. 
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