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Abstract: The soil water balance model PERFECT was developed and validated on a number of 
experimental sites throughout Queensland. This model, and variations of, has been widely used to assess the 
impacts of crop and fallow management on hydrology, sediment generation, deep drainage, crop growth and 
yield. In recent years, PERFECT has been applied spatially to model the environmental impacts of 
management at the catchment scale, often with little data available for calibration and validation.  

Uncertainty in these spatial implementations of PERFECT come from a variety of sources – from the spatial 
data that go into representing model scenarios, to climate inputs, parameterisation of soils and management 
systems and the structure of the model itself. Formal assessments of each of these sources of uncertainty are 
lacking, and before the spatial uncertainty of these models can be addressed the fundamental uncertainty 
surrounding parameterisation and model structure should be addressed. This paper attempts to explore 
predictive uncertainty in PERFECT, and predictive error variance for a particular calibration case, using 
PEST software with data and an existing parameter set from an experimental site at Greenmount, southern 
Queensland, Australia.  

Eighteen parameters were included in the analysis, and four sets of measured data – runoff, soil water, deep 
drainage and erosion. The information content of the observations was sufficient for seven dimensions of 
parameter space to be determined; half the parameters could be identified to some degree. Parameter 
identifiability appears to be driven by the limited range of processes captured in the data. 

The contributions of parameters to predictive uncertainty varied according to the prediction of interest, as did 
the importance of the different observation datasets to reducing uncertainty. Uncertainty bounds of key 
predictions of runoff, erosion and deep drainage were as good as, or better, than expected (e.g., ± 2.1 mm 
runoff for one large event, ± 10.2 mm for total runoff volume in the four-year validation period), suggesting 
that more sources of uncertainty could be identified in future analyses. This study has provided valuable 
information on the uncertainty in PERFECT which was not previously available, and has raised a number of 
questions which could be explored in future studies. 
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1. INTRODUCTION 

The cereal cropping zone of southern Queensland, Australia, has long been the focus of research into the 
impacts of land management on hydrology and soil loss. Long-running experimental sites were established in 
this region in the 1970s and 1980s to assess the impact of management practices on hydrology, erosion and 
production in cropping systems. At the same time, an integrated model was developed to better understand 
these interactions. This model, PERFECT (Littleboy et al. 1989, 1999), has since been widely validated on 
experimental sites around Queensland (e.g., Littleboy et al. 1989, 1992, 1996; Freebairn et al. 1991; Thomas 
et al. 1995; Thornton et al. 2007). PERFECT, and its derivatives, remain in common use for site-based 
modelling of production, hydrology and erosion. In recent years, these models have been applied spatially to 
simulate the environmental impacts of management at the catchment scale, often with little or no data for 
calibration and validation. 

PERFECT uses a range of input parameters pertaining to crops, management, soil, hydrology and erosion, 
some of which may be derived from field measurement or surrogate (pedo-transfer) models, and others by 
rules-of-thumb or calibration. Throughout the years of its application, there has been no formal assessment of 
model uncertainty, excepting a local sensitivity analysis reported in the original PERFECT manual (Littleboy 
et al. 1989). In fact, there is little record in the literature of uncertainty assessment for agricultural systems 
models. Notable exceptions include Wang et al. (2005) on uncertainty in corn yield and soil organic carbon 
predictions in EPIC using the GLUE methodology, Pathak et al. (2007) on the uncertainty of a new cotton 
model in CROPGRO using global sensitivity analysis, and several studies on uncertainty of crop model 
predictions due to varying climate data inputs (e.g., Nui et al. 2009, Rivington et al. 2006). 

With recent moves to apply PERFECT to complex spatial scenarios, predictive uncertainty is emerging as an 
issue. Uncertainty in spatial implementations of PERFECT come from a variety of sources – from the spatial 
data that go into representing model scenarios, to climate inputs, parameterisation of soils and management 
systems and the structure of the model itself. While spatial modellers are aware that the application of these 
site-based models across complex landscapes will involve substantial error, there is an expectation that they 
can discriminate between the range of environmental conditions mapped out across a landscape. Before the 
spatial uncertainty of these models can be addressed, the fundamental uncertainty surrounding 
parameterisation and model structure should be assessed. This paper attempts to explore predictive 
uncertainty in PERFECT, and predictive error variance for a particular calibration case, using PEST software 
(Doherty 2008) with data and an existing parameter set from an experimental site in southern Queensland.  

2. METHODS 

2.1. The PERFECT Model 

PERFECT is a daily time-step biophysical model which simulates the dynamics of plant growth, soil water 
balance, ground cover, soil erosion and management in a cropping system. PERFECT simulates a one-
dimensional water balance, coupled with a dynamic crop model and a simple erosion algorithm. Thorough 
descriptions of the components of PERFECT can be found in Littleboy et al. (1999). 

2.2. Study Site and Data 

Uncertainty in PERFECT was explored using experimental data, and the results of previous modelling 
efforts, from a site at Greenmount, south of Toowoomba in southern Queensland, Australia (Freebairn and 
Wockner 1986). This site is considered representative of much of the cropping land of the eastern Darling 
Downs, and has a relatively long data record compared to most other experimental sites around Queensland. 
Several contour bays were instrumented at the site; the dataset used in this study is a composite of bays 
forming a continuous record under wheat with a burnt stubble treatment.  

Data collected at Greenmount are described in Freebairn and Wockner (1986). The common period of record 
for key datasets runs from 20/04/1976 to 31/12/1988. It includes runoff measured at the end of the contour 
bays, water contents for each soil horizon (after harvest, mid-fallow and prior to planting) and total soil 
movement. The study period captured a wide range of events and is considered a good representation of the 
site. A deep drainage rate estimate for Greenmount, of 14 mm/yr (for the period 1977 – 1996), is also 
available from the chloride study of Tolmie et al. (2004). 

The first eight months of the record were designated as a model warm-up, while the remainder was divided 
into an eight year calibration period (1977 – 1984), used to condition the uncertainty matrix, and a four year 
validation period (1985 – 1988) to test the uncertainty of key predictions (Figure 1).  
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2.3. Uncertainty Analysis 

All models, by definition, are simplifications of reality. The inability of a model to simulate real systems 
results in some amount of predictive error, with the potential for error increasing as the structural inadequacy 
of the model to support a given prediction increases (Gallagher and Doherty 2007). Noise in calibration data 
further confounds the issue. ‘Uncertainty’ can be considered an intrinsic Bayesian quality, a measure of the 
inability of a model to simulate the true nature of a system due to these various sources of error.  

Even with a model operating at a reduced resolution to reality, the information content of calibration data is 
often insufficient to uniquely identify all parameters in a hydrologic model (Doherty and Hunt 2009); any 
number of parameter sets may exist that will acceptably simulate the processes of interest. Calibrating a 
model is a deterministic approach that requires a unique solution be found to what is really a non-unique 
problem. To achieve calibration, a model must be parsimonised, further simplifying it to allow a unique 
parameter set to be found. In this way, the calibration process itself may add to the error of the prediction.  

PEST (Doherty 2008) is a model-independent software package used for parameter estimation and predictive 
uncertainty analysis. PEST was first used to carry out singular value decomposition, providing an estimate of 
the number of dimensions of the models solution space, identifiability of each parameter in that space (i.e., 
the ability of observation data to constrain parameters), and relative reduction in error from each parameter 
due to calibration (Doherty and Hunt 2009). This analysis was carried out on the full data record from 1977 – 
1988. The data were then split into the calibration and validation sets, and the PREDVAR and PREDUNC 
utilities were used to perform some simple linear analyses of predictive uncertainty. These provide 
assessments of the uncertainty of key model predictions, the contribution of each parameter to predictive 
uncertainty and the value of different observation data types in reducing uncertainty.  

Parameter values 

Saturated hydraulic conductivity, evaporation, curve number and soil erosion parameters were obtained from 
previous manual model calibrations (Owens et al. 2004; Littleboy et al. 1989) (Table 1). This type of 
information is commonly taken from an experimental site and extrapolated to similar soils for the purposes of 
spatial modelling. Roughness parameters, cntil and rrr, had not been calibrated but were included in this 
analysis to ensure a more thorough assessment of the model. These parameters were set to low values, as 
roughness is considered a minor driver of hydrology at this site. Parameters pertaining to soil water (air dry 
moisture content, crop lower limit, drained upper limit and porosity) were fixed based on the measured soil 
water data, and were not included in the uncertainty analysis. The soil was simulated using six layers. Crop 
growth was modelled using the Woodruff-Hammer wheat model using a fixed phenology algorithm; two 
growing season parameters (dd_em and dd_an) and two root growth parameters (rootg and rootm) were 
included as the most likely sources of uncertainty for simulating crop growth. 

Uncertainty in the parameter values was defined by subjectively estimating possible parameter distributions, 
based on local knowledge of the Greenmount site and considering the known structural or theoretical bounds 
to each parameter. Parameter values and their distributions were log transformed during the analysis. 

Observation data 

Four observation data types were included in this study – daily runoff, total profile soil water, daily erosion 
and average annual deep drainage rate. Measurement noise was accounted for by estimating the likely error 
bounds for each type of observation; this was ± 2 mm for daily runoff, ± 25 mm for profile soil water, ± 3 
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Figure 1. Measured rainfall and runoff data for Greenmount, April 1976 – December 1988. 
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t/ha for daily erosion and ± 3 mm for the 
deep drainage rate. Each observation 
group was then weighted to the inverse of 
these uncertainties. 

Time series data contain some degree of 
autocorrelation, resulting in an 
information content below what may be 
expected from the total number of 
observations. This is particularly the case 
with episodic runoff in contour bays, 
where the majority of days have zero 
runoff – these data points provide little 
information to the model. In an attempt to 
account for temporal autocorrelation, 
runoff and erosion observations were only 
included in the analysis when they related 
to a rainfall event – either days that had 
rain, or the first day after rain. All other 
days in the runoff and erosion records had 
a zero weighting applied. For the 
uncertainty analyses, all observations in 
the validation period removed by 
weighting them to zero. 

3. RESULTS  

3.1. Parameter Space and 
Identifiability 

Repeated singular value decomposition, 
using increasing numbers of dimensions, resulted in a major drop in error variance of key predictions at 
seven singular values. This indicates the likely number of dimensions of the model solution space (Doherty 
2008). That is, in this case, of the eighteen dimensions of parameter space, only seven dimensions can be 
resolved. Parameter identifiability (the cosine of the angle between a parameter’s unit vector and its 
projection into the solution space; Doherty and Hunt 2009) within these seven dimensions is illustrated in 
Figure 2. This index may vary between 0 and 1, with 0 indicating a parameter is completely un-identifiable 
and a value of 1 indicating it is completely identifiable, based on the available observation data. The 
idenfiability index, combined with the relative error reduction index, indicate that ksat1, ksat2, cona, u, cn2, 
k and dd_em are the most important parameters in terms of their contribution to predictive uncertainty. 

The results in Figure 2 demonstrate that the ksat parameters, excepting ksat2, are largely unidentifiable; this 
may be due to the use of total profile soil water rather than horizon-based data. Parameters cona, u and cn2 

Table 1. Parameters included in the analysis, their 
calibrated/default value and assessment of their uncertainty 

Parameter Description Value 
Expert  assessed 
uncertainty bounds 

ksat1 

Saturated hydraulic 
conductivity (mm/hr) for 
each horizon 

3.0 0.5 – 4.5 

ksat2 1.0 0.4 – 1.2 

ksat3 1.0 0.2 – 1.2 

ksat4 1.0 0.1 – 1.2 

ksat5 0.1 0.01 – 0.3 

ksat6 0.1 0.01 – 0.2 

cona Stage II soil evaporation 3.75 3.5 – 6.5 

u 
Stage I soil evaporation 
limit (mm) 

8 4 – 10 

cn2 Bare soil curve number 73 60 – 80  

cnred 
Reduction in curve number 
at 100% cover 

20 0 – 40  

cntil 
Maximum reduction in 
curve number due to tillage 

5 0 – 20  

rrr 
Cumulative rainfall to 
remove roughness (mm) 

40 25 – 200 

dd_em 
Degree days for crop 
emergence 

120 90 – 150  

dd_an 
Degree days from anthesis 
to harvest 

600 400 – 700  

rootg Root growth per day (mm) 13.5 8.0 – 16.0   

rootm Maximum root depth (mm) 1500 1200 – 1800  

k Soil erodibility factor 0.37 0.2 – 0.5 

rill Soil rill/interrill ratio 3.0 1.0 – 5.0 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

ksat_1 ksat_2 ksat_3 ksat_4 ksat_5 ksat_6 cona u cn2 cn_red cn_til rrr k rill dd_em dd_an rootg rootm

Id
en

tif
ia

bi
lity

 a
nd

 re
la

tiv
e 

er
ro

r r
ed

uc
tio

n 
in

di
ce

s

Vector 7

Vector 6

Vector 5

Vector 4

Vector 3

Vector 2

Vector 1

Relative error red

Figure 2. Parameter identifiability, and contribution of parameters to the seven dimensions of the solution 
space, based on observation data for the period 1977 – 1988. 
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are well identified, however, the other curve number parameters are completely unidentifiable. The 
experimental data, being for a burnt stubble treatment which is one of several fallow treatments studied at 
Greenmount, has a limited range of cover and tillage conditions represented in the data, thus providing little 
to inform the parameters relating to cover and tillage.  

In the crop model, the growing season parameters are identifiable, while the root growth parameters are not. 
Again, this may be due to the exclusion of horizon-specific soil water data. In the erosion model, a major 
difference in identifiability between k and rill is reflective of the expert knowledge of these parameters and 
the erosion processes acting at this site. The dominance of cn2 and cona on the major vectors 1-3 suggests 
they are the most identifiable overall. 

3.2. Predictive Uncertainty 

Predictive uncertainty was assessed for some long term predictions which are indicative of the type of 
prediction commonly required of PERFECT. These were total runoff, erosion and deep drainage for the 
entire validation period. Uncertainty of a daily runoff prediction (on 3/4/1988, the largest event in the 
validation period) was also assessed to contrast between the broad and fine temporal scales. 

Uncertainty bounds on these four predictions are 
shown in Table 2, along with the predicted values. 
These results show that pre-calibration predictive 
uncertainty, based only on expert assessment, is high 
but is reduced through calibration. The uncertainty 
bounds of the calibrated model are within the limits 
expected of PERFECT; they may in fact be narrower 
than expected, possibly reflecting an omission in this 
study of other sources of uncertainty. 

The contributions of each parameter to error variance 
in the calibrated model, for the four predictions, are 
shown in Figure 3. For both the long term and daily 
runoff predictions, cn2 makes the largest contribution 
to predictive uncertainty. Moving from long term to daily, the ksat parameters make a larger contribution to 
uncertainty, while rrr and the crop parameters are of lesser importance. For the prediction of total erosion, all 
the hydrology parameters remain large contributors to uncertainty, reflecting the strong dependence of the 
erosion model on hydrology. It is interesting to note that rill makes no contribution to this prediction. In the 
prediction of deep drainage, the crop parameters are more dominant, reflecting the reliance of deep drainage 
predictions on the accurate simulation of soil water. The rootm parameter made no contribution to 
uncertainty for all predictions. 

Table 2. Uncertainty bounds of predictions, 
based on expert prior assessment of parameter 
uncertainty vs. based on the calibrated model  

Prediction 
Predicted 
value 

Uncertainty (2 st dev) 

Uncalibrated Calibrated 

Total runoff 269.5 mm ± 73 mm ± 10.2 mm 

Total 
erosion 

228.7 t/ha ± 69.2 t/ha ± 9.0 t/ha 

Total deep 
drainage 

53.8 mm ± 37.5 mm ± 6.8 mm 

Daily runoff 
(3/4/1988) 

59.3 mm ± 15.5 mm ± 2.1 mm 
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Figure 3. Parameter contributions to optimised error variance for predictions of (a) total runoff for the validation 
period, (b) total erosion, (c) total deep drainage, and (d) daily runoff on 13/04/1988. 
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The value of each type of observation data in reducing the uncertainty of the four predictions is shown in 
Figure 4. As would be expected, the observation data which match each type of prediction make the largest 
contribution to reducing its uncertainty. Of note is the large contribution that erosion data make to the runoff 
predictions, the relative lack of importance of other data types in predicting runoff and erosion, and the 
significant contribution by each data type to predicting deep drainage. These results highlight the varying 
importance of each data type depending on the prediction of interest. 

4. DISCUSSION  

Calculation of parameter identifiability indices showed that a large number of parameters cannot be 
estimated, even with the reasonably comprehensive experimental dataset that is available for the Greenmount 
site. This analysis was limited, however, by the use of data from only the burnt stubble treatment; it could be 
repeated with data from different fallow treatments and also with horizon soil water data, to confirm which 
parameters can be estimated and which (if any) cannot be constrained at all. This information will allow 
modellers to gain efficiencies, by fixing some parameters with the knowledge that calibration data are 
unlikely to inform their true values. 

The uncertainty bounds for key predictions are as good as, or better, than expected of the model. This 
indicates that some sources of uncertainty may still be unaccounted for. The omission of the soil water 
parameters and some crop parameters from this study supports this theory. Repeating the assessment with a 
more comprehensive set of parameters could refine these uncertainty estimates. Uncertainty of other 
predictions, such as soil water contents, and predictions over different time scales, could also be explored. 

In spatial applications, PEFECT is used without data for formal validation, instead there is the assumption 
that sensible parameter values can be identified for a range of environmental conditions which will result in 
predictions that are accurate at least in a relative sense. Based on the results of this study, focus can be 
directed to estimating parameters which have been shown to make the largest contributions to predictive 
uncertainty, while the remaining parameters can be fixed at default values. As shown in Figure 4, parameter 
contributions vary depending on the type of prediction being made. The next step toward assessing 
uncertainty of spatial modelling could be to repeat this study using more general assumptions for preferred 
parameter values and wider parameter bounds, reflecting the situation where modellers must parameterise 
spatial scenarios based only on extrapolation from calibrated sites and expert knowledge. This would be 
expected to result in much wider uncertainty bounds than those for a well studied site such as Greenmount. 

This study used methods based on assumptions of model linearity; while these assumptions would not have 
been entirely valid the results should be considered a reasonable assessment of predictive uncertainty. Further 
work could be carried out using non-linear methods, such as Monte Carlo analysis, to refine the results 
presented here. 
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Figure 4. Decrease in error variance due to inclusion of observation data, for predictions of (a) total runoff for 
the validation period, (b) total erosion, (c) total deep drainage and (d) daily runoff on 13/04/1988. 
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5. CONCLUSIONS 

PEST utilities have been used to provide valuable information on predictive uncertainty in PERFECT, which 
was not previously available. Information on the contributions of various parameters to uncertainty will help 
modellers to more efficiently parameterise scenarios in spatial modelling applications. Uncertainty bounds of 
key predictions were as good as, or better, than expected. In carrying out these analyses a number of 
questions have been raised, pertinent to both site-based and spatial modelling applications, that could be 
addressed in future studies. 
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