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Abstract: Model predictions of biogeochemical fluxes on the landscape scale are highly uncertain, both 
with respect to stochastic (parameter) and structural uncertainty. The idea of our ensemble modelling 
approach is to reduce the predictive uncertainty by covering part of the parameter and model structural 
uncertainty. In this study 4 different models (LASCAM, a modified INCA model, SWAT and HBV-N-D) 
designed to simulate hydrological fluxes as well as mobilization and transport of one or several nitrogen 
species are applied over the meso-scaled River Fyris catchment in Mid-Eastern Sweden. 

Hydrological calibration against 5 years of recorded discharge at two stations gives highly variable results 
from Nash-Sutcliffe Efficiency (NSE) values above 0.80 to values around 0.50. SWAT and HBV-N-D gives 
alternatively the best simulation result at each station respectively. Alteration of nitrogen parameters 
following Monte-Carlo or Latin-Hypercube stratified sampling schemes is realized in order to cover the 
parameter uncertainty of predictions for 3 nitrogen species: nitrate (NO3), ammonium (NH4) and total 
nitrogen (Tot-N) in terms of exported loads.  

For each model and each nitrogen species, predictions are ranked in two different ways regarding the 
performance indicated by two different objective functions: the coefficient of determination R² and the Nash-
Sutcliffe Efficiency (NSE). Model ensembles were compiled in various ways. A total of 396 Single Model 
Ensembles (SME) are generated using an increasing number of model members. Finally, 78 Multi-Model 
Ensembles (MME) are combined by using the best SME for each model, nitrogen species and station. The 
evolution of the two aforementioned objective functions is used as performance descriptor of the ensemble 
procedure. 

In each studied case, there is always at least one compilation scheme which outperforms any of its members. 
The best SME are multiple-linear regression models with R² selected members, increasing the best NSE 
values from negativity up to very high ones (0.83). The uncertainty bounds of the SME are almost always 
smaller than the one introduced by the whole set of selected single model runs still including  most of 
measurements and even more (half of the cases) than the bounds of the selected single runs set. 

In the same way, there is always at least one MME combination scheme which outperforms all the SME, but 
the increase in model performance is pronounced than the difference between single model runs and SME. 
The best MME are the ones with the most members and both R² and NSE values are reaching 0.89 in the best 
case. Uncertainty areas described by MME are alternatively increased or reduced compared to the bounds 
delineated by their members. No general trend is deduced for the studied cases. 

Keywords: Ensemble modelling, Nitrogen, Fyris, Multi-model ensembles, Single-model ensembles, 
Uncertainty 
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1. INTRODUCTION 

In every modelling system predictive uncertainty results from a combination of at least three uncertainty 
sources: model structure uncertainty, forcing uncertainty and parameter uncertainty (also referred to as 
stochastic uncertainty). It is usually difficult to assess the contribution to the total uncertainty from each of 
these elements. However, ensemble approaches have been proposed to investigate part of this contribution 
(Breuer et al., 2009). 

Several global methods to assess parameter uncertainty have been described, e.g. the Monte-Carlo sampling 
based Generalized Likelihood Uncertainty Estimation (GLUE) approach (Beven & Binley, 1992). As 
parameter interactions are usually a sensitive source of uncertainty, a high number of realisations is required 
to cover a representative number of feasible parameter combinations and corresponding model simulations. 
Different combinations of parameter sets for a given model, based on a random sampling of parameter values 
(e.g. Monte-Carlo procedures or Latin-Hypercube stratified sampling, McKay et al., 1979) in realistic ranges, 
are a common way to compile single-model ensembles (SME), i.e. combinations of distinct predictions 
obtained by perturbation of parameters, input data or initial conditions. SME built from random sampling are 
direct descriptions of the possible range of outcomes and illustrate part of the stochastic uncertainty.  

Multi-model ensembles (MME) are based on the combination of several deterministic model outputs 
following different statistical post-processing of model outputs. They have been widely used in climatic and 
atmospheric sciences where MME usually outperform individual models and SME. However, it has only 
received little attention in hydrology even though initial MME studies of hydrological simulation were 
published in the mid 1990s (Shamseldin et al., 1997). Lately some new initiatives have started to explore 
ensemble modelling in hydrology, such as the Distributed Model Intercomparison Project (DMIP, Smith et 
al., 2004) and assessing the impact of Land Use Change on Hydrology by Ensemble Modelling (LUCHEM, 
Breuer et al., 2009). However, research into hydro-biogeochemical applications remains scarce. MME are a 
state-of-the-art option to consider the structural model uncertainty in the total predictive uncertainty. 

This study proposes to compile different SME and MME by merging the nitrogen outcomes of four models 
following different methods previously used in the LUCHEM project (Viney et al., 2009). The models 
involved are LASCAM (Sivapalan et al., 1996a,c; Viney & Sivapalan, 2000) and a Python language self 
written tool inspired by the snow and soil moisture routines of HBV (Bergström, 1976 & 1992) for flow 
generation and coupled to INCA (Whitehead et al., 1998) for nitrogen predictions. The main modification of 
HBV concerns the separation of soil and groundwater which is made at the land-use scale instead of the sub-
catchment scale. All the equations were adapted from literature references. The two remaining models are 
SWAT (Arnold et al., 1998) in its 2005 version and HBV-N-D (Wrede, 2006) a distributed version of the 
original HBV water routines combined to the conservative solute transport model concepts of the TACD 
model (Wissmeier & Uhlenbrook, 2007). Evolution of the quality of predictions with respect to two different 
objective functions is done as well as analyses of uncertainty bounds. The final objective of this study is to 
answer two different questions: 

• Is there an optimal merging scheme? 
• Is there an optimal number of ensemble members? 

2. MATERIALS AND METHODS 

2.1. The River Fyris Catchment 

The Fyris catchment is located in the mid-eastern part of Sweden, 90 km north of Stockholm. The Fyris 
River has a catchment area of 2000 km² and flows into the Lake Ekoln, a northern part of Lake Mälaren 
(Sweden’s third largest lake) which drains into the Baltic Sea. It is a lowland catchment which elevation 
ranges between 15 and 115 metres a.s.l. Streams are draining from the north, east and west to the outlet at 
Flottsund (Figure 1). 

Land-use is dominated by forest (mainly coniferous trees) with about 59% of the catchment while crop lands 
cover 33% of the area. Other minor land-use types are wetlands (4%), urban areas (~2%) and lakes (~2%). 
Forests are mainly associated with till and crop lands with clay soils (Lindgren et al., 2007). 

Daily records of 8 rain gauges and 3 temperature stations were available from SMHI (Swedish 
Meteorological and Hydrological Institute) for the 5 years study period (2000 to 2004). During this time 
mean annual precipitation was about 640 mm. The warmest and wettest month on average was July (>80 mm 
precipitation, +17°C mean daily temperature) while driest month was April (<40 mm precipitation) and 
coldest months were December and January (-1°C). 
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Over the studied period (2000 to 2004), two daily discharge series were available for two sub-catchments: 
Vattholma and Sävja, which contributing areas are 
281 km² and 699 km² respectively (Figure 1). There 
is no gauging station at the catchment outlet to Lake 
Mälaren. High flows usually occur from late autumn 
to early spring. Inter-annual variability of discharge 
is high and thaw-refreezing events lead to high 
temporal variability of winter discharge in some 
years. Annual runoff was 219 mm at Vattholma and 
189 mm at Sävja. 

For the same period, stream chemistry data from 4 
long-term measurement stations of the SLU 
(Swedish University of Agriculture) was available 
for model applications. Monthly measurements of 
NO3+NO2, NH4 and Tot-N concentrations resulted 
in a total of 60 measurements for each station. The 
water quality sampling stations Vattholma and 
Kuggebro are located closely to the gauging stations 
Vattholma and Sävja, respectively (Figure 1). 
Estimates of daily exported loads were computed 
for these gauging stations using concentrations 
measured at the aforementioned sampling stations. 
For NO3, concentrations were estimated to be 
equivalent to the NO3+NO2 ones. 

In-stream nitrogen input data from sewage treatment 
plants was also available on a daily time step for the 
largest plant in Uppsala, and with a biweekly or 
monthly resolution for the four smaller ones. The observed point source discharges were interpolated to a 
daily time step as described in Lindgren et al, (2007). 

2.2. Models and Setup 

The four models LASCAM, INCA, SWAT and HBV-N-D are able to simulate both runoff and the 
mobilization and transport of different N-species (see Table 1) at the landscape scale and at a daily time step. 
The models vary considerably in their smallest spatial units as well as the required input data and provided a 
good structural variability among the cohort. 

LASCAM, INCA and SWAT are semi-distributed models. The same sub-catchment disaggregation scheme 
was adapted for each of them. The fully distributed HBV-N-D is implemented in the PCRaster (Karssenberg 
et al., 2001) modeling environment and was already applied on the same watershed in the frame of a model 
comparison for nitrogen source apportionment (Lindgren et al., 2007). We used the same setup of the HBV-
N-D model based on 250 x 250 m grid cells. 

The hydrological components of each model were calibrated against two available runoff records over the 
period 2000-2004: Vattholma and Sävja (Figure 1). When available, integrated calibration tools were 

 

Figure 1. The River Fyris catchment: stream 
network, outlet (blue cross), Uppsala (shaded 

area), precipitation stations (black full circles), 
temperature stations (green squares), discharge 

gauges (blue triangles), water quality stations (red 
triangles) and treatment plants (brown squares). 

Table 1. Model characteristics.  

Model Smallest spatial 
unit 

Climate forcings Outputs N forcings 

LASCAM Sub-catchment Daily P and PET NO3, NH4, Tot-N Rainfall concentration, fertilizer application 

INCA Land-Use Daily P and T NO3, NH4 Wet and dry deposition, fertilizer 
application, STP effluents 

SWAT HRU Daily P, maximal and 
minimal daily T 

NO3, NO2, NH4, 
Organic-N 

Rainfall concentration, fertilizer 
application, STP effluents 

HBV-N-D Grid cell Daily P and T, monthly 
PET 

Tot-N Rainfall concentration, leaching 
coefficients, STP effluents 

HRU: Hydrological Response Unit, Unique combination of a land-use with a soil type, P: Precipitation, T: Temperature, PET:  
Potential Evapotranspiration, STP: Sewage Treatment Plant 

 

3167



Exbrayat et al., Ensemble predictions of hydro-biogeochemical fluxes at the landscape scale 

preferred while PEST was used with the time-consuming HBV-N-D model. Calibration methods are 
summarized in the Table 2. Weights were set as the inverse of the standard deviation of observations. The 
integrated ParaSol method utilized with SWAT considers two independent sums of the squared errors (SSE). 

In order to compare the goodness-of-fit resulting from the calibration efforts, calibration results were 
expressed as the Nash-Sutcliffe efficiency (NSE, Nash & Sutcliffe, 1970). Good NSE values can be achieved 
with the sole good representation of high peaks. Therefore, the quality of low flow simulations was also 
checked by computing logNSE, the efficiency based on logarithmic values of predictions and observations, 
which puts more weight also to lower flows than the usual NSE. 

2.3. Ensembles construction and assessment 

Model runs with fixed calibrated hydrology and varied parameters for the simulation of N modules were 
created for the set up of SME. Monte-Carlo and Latin-Hypercube stratified sampling (McKay et al., 1979) 
procedures were used for the alteration of the N parameters. Several SME for each model, nitrogen species 
and measurement station were built. The members used in the ensembles construction were selected 
following two criteria: 

1. The 2, 5 and 10 best runs considered using the determination coefficient R² as a goodness-of-fit 
indicator for the simulation of exported loads, and 

2. The 2, 5 and 10 best runs are considered using the NSE as a likelihood estimate for the same fluxes. 

The difference of these two criteria is that R² requires only the dynamics, or relative differences, to be 
simulated correctly, while NSE also evaluates the absolute values. For each case (i.e. N species, station and 
model) different merging schemes were then applied to each of the 6 sets of single model runs. It provided a 
total of 396 different SMEs (22 per model for each simulated N species at each station). SME combinations 
were realized following some of the methods used by Viney et al. (2009), including: 

• daily mean of the predictions for each day, 
• daily median of all ensemble members, 
• multiple linear regression ensembles using the single runs as independent variables and the 

observations as dependent variables and 
• multiple linear regression ensembles compiled in the same way but with a zero intercept. 

The feasibility of each regression model was also checked by extrapolating the coefficients to the whole time 
series in order to check the occurrence of negative values. 

One best SME regarding R² and NSE for each model, N species and measurement station was selected to set 
up MME. Following the previous schemes, we obtained 78 different combinations, alternatively using 2 or 3 
models as members for each N species (INCA being not able to simulate Tot-N, and HBV-N-D considering 
only it), before examining the evolution of both objective functions for every generated MME and SME.  

We used the P-factor to characterize the proportion of observed values bracketed by the uncertainty area of 
the full set of SME and MME (Abbaspour, 2007). The D-factor, defined as the ratio of the average width of 
the uncertainty bounds to the standard deviation of the observations, was the second computed descriptor. 
Best results are obtained with P-factor values close to 1 and D-factor values close to 0 (i.e. thin uncertainty 
ranges including most of the actual observations). 

3. RESULTS 

3.1. Hydrology 

A summary of calibration results is presented in Table 3. 
A high variability is observed between the different NSE 

Table 3. Goodness-of-fit indicators for 
calibrated runs 

 Vattholma Sävja 

Model NSE logNSE NSE logNSE 

LASCAM 0.54 0.49 0.47 0.76 

INCA 0.74 0.60 0.65 0.69 

SWAT 0.83 0.69 0.76 0.64 

HBV-N-D 0.65 0.67 0.76 0.76 

 

Table 2. Calibration characteristics for hydrology 

Model Calibration Method Objective function Integrated tool Reference 

LASCAM SCE-UA Weighted sum of efficienciesa Yes Duan et al., 1993 

INCA SCE-UA Weighted sum of the square residuals No Duan et al., 1993 

SWAT ParaSol Independent sums of the square residuals Yes van Griensven et al., 2002 

HBV-N-D PEST Weighted sum of the square residuals No Doherty, 2005 
a Efficiency for each flux is automatically calculated as 1-Var(residuals)/Var(observations) 
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values. The semi-distributed models perform better at Vattholma than at Sävja. Considering the second 
objective function, logNSE, which was not used in the automatic calibration process for hydrology itself, 
results are better for Sävja than for Vattholma, except for SWAT. While LASCAM showed the worst NSE 
for both discharge stations, it obtains the highest logNSE value for Sävja. 

Considering these two objective functions as likelihood estimates of two different parts of flow dynamics, a 
global preferable model in flow simulation can be pointed out for each station, i.e. SWAT for Vattholma and 
HBV-N-D for Sävja, respectively. 

3.2. Nitrogen 

3.2.1 Single Runs Overview 
Results are summarized in Table 4. Except for INCA, the best results are obtained at Sävja station. SWAT 
performs the best for NO3 simulations regarding both likelihood estimators. For NH4 the best R² and NSE are 
provided by INCA at Vattholma and by LASCAM at Sävja. For Tot-N, the best R² values are obtained with 
SWAT and the best NSE with LASCAM. NSE takes negative values 10 times, sometimes even when the R² 
values can be very high. It seems that the trends are well caught by the models with negative NSE, but with 
wrong absolute values. 

3.2.2 Single-Model Ensembles 
In this study, more than 70% of regression models are discarded due to the occurrence of negative values in 
the course of extrapolation of coefficients. There is a trend that if more members are used to build a SME, the 
more often these SME are discarded. We therefore alternatively used constrained regression models to 
circumnavigate this problem. For all investigated N compounds, improvements of at least one objective 
function occur. However, the median never increases both objective functions and only rare and weak 
improvements are achieved by using the mean of models. Best SME results are always obtained by using 
regression with R² selected members in unconstrained models. NSE remains negative only once (NH4 
prediction by SWAT at Vattholma). 

In almost every case, the D-factor of the area described by a full set of SME is smaller than the one bounded 
by its ensemble members. It is accompanied by both, increasing and decreasing P-factors (data for R- and D-
factors not shown). The D-factor is only increasing when the P-factor is really poor for the whole set of 
selected single runs (NH4 for SWAT). 

Table 4. Nitrogen results summary 

Models Vattholma Sävja 

 NO3 NH4 Tot-N NO3 NH4 Tot-N 

R² NSE R² NSE R² NSE R² NSE R² NSE R² NSE 

LASCAM             

Best Single Runa 0.511 0.336 0.188 < 0 0.606 0.249 0.603 0.550 0.502 0.109 0.615 0.545 

Best SMEb 0.513 0.511 0.272 0.272 0.622 0.622 0.616 0.574 0.517 0.517 0.639 0.639 

INCA             

Best Single Runa 0.301 < 0 0.471 < 0   0.229 < 0 0.323 0.029   

Best SMEb 0.301 0.301 0.473 0.473   0.229 < 0 0.354 0.354   

SWAT             

Best Single Runa 0.678 0.502 0.32 < 0 0.84 < 0 0.839 0.720 0.164 < 0 0.821 < 0 

Best SMEb 0.686 0.686 0.326 0.326 0.864 0.864 0.833 0.827 0.175 0.175 0.831 0.830 

HBV-N-D             

Best Single Runa     0.385 < 0     0.624 < 0 

Best SMEb     0.393 0.393     0.752 0.752 

             

Best MMEb 0.754 0.728 0.618 0.618 0.876 0.876 0.867 0.849 0.645 0.645 0.890 0.883 
a Best single runs regarding R² and NSE are not necessarily obtained with the same parameter set 
b Best SME and MME R² and NSE values are obtained with the same ensemble 

3.2.3 Multi-Model Ensembles 
Similar to SME, the feasibility of the regression models is checked prior to further model evaluation. On the 
24 MME combined by using regression, 9 are discarded. Simple mean increases both R² and NSE in 25% of 
cases compared to the best SME values. Median outperforms R² in only one case. 
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All the available multiple linear regression models present an improvement of both likelihood estimators 
compared to their members. Better results are obtained by including the maximum of members (here 3) in 
unconstrained models. Performance of the MME is more improved when the members that are combined in 
an ensemble present weaker result (e.g. NH4 at Vattholma) compared to already high performing model 
members (e.g. Tot-N). 

D-factor is lower for MME than for their respective members in 3 cases in which the P-factor is only 
increased once (Tot-N at Vattholma). For the remaining MME, improvements of P-factor occur twice.  

4. DISCUSSION 

4.1. Hydrology 

As illustrated by the hydrological calibration results in Table 3, the ranking of model performances using a 
single objective function can be misleading. Structural differences involve a high variability in the calibration 
results. For instance, a bad performance during high flow simulation for LASCAM is illustrated by overall 
weak NSE values. The lack of a snow module in LASCAM may be the clue to explain the bad fit during high 
flow periods, as hydrographs in this geographical area are dominated by snow melt events. However, this 
weakness is compensated at Sävja by a good simulation of low flows. An already planned improvement of 
LASCAM is the integration of a degree-day approach to handle snow pack and snow melt simulation. This 
study focuses on N predictions and therefore, the effects of ensemble modelling on hydrological predictions 
for the River Fyris catchment are presented elsewhere. 

4.2. Nitrogen 

A good match of observed and simulated N loads is not necessarily required to achieve good R² values. 
Selecting the best single runs regarding this criterion is therefore probably the source of large predictive 
uncertainty reflected in large D-factors. Best results for SME are achieved by combining the best R² selected 
members in multiple linear regression models. Effects of this procedure are especially obvious for the 
improvements of NSE. The more members are combined into linear models; the better is the performance 
thanks to more precise adjustments. But the risk of unrealistic values increases with an increasing number of 
members. Uncertainty bounds are usually reduced between single runs and SME but still include most of the 
measurements, reflected by good P-factors. 

MME results always show the best overall model performances but improvements are not very high 
compared to SME. Due to variability of results obtained in this study, this type of ensemble generation 
cannot be demonstrated as a definitive way to reduce the prediction uncertainty. This is mainly attributable to 
the already good performances of the SME, as there is only limited space for further improvement of the 
overall model performance. Uncertainty ranges which are introduced are also smaller and then harder to 
decrease than in the case of the SME. Combining MME from the best single runs rather than the SME could 
be another way to take account of the global prediction uncertainty linked to the full set of considered 
models. 

The compilation of ensembles was only realized in a re-prediction exercise and regression coefficients were 
computed by using the full set of measurements. Further investigation may be to check their applicability in 
split-sample and proxy-basins approaches.  

5. CONCLUSION 

Numerous SME and MME were compiled. In every studied situation numerous combination schemes show 
improvements compared to the performance of its single members. Regression schemes are the most efficient 
combinations when members are selected by their R² values. Ensembles are then only adjustment of the 
absolute values of already well-trended predictions. The risk of unrealistic values remains high with higher 
numbers of ensemble members and has to be checked. 

At the same time, the evolution of uncertainty bounds between members and full sets of ensembles show 
variable patterns. SME uncertainty bounds are smaller than uncertainty described by their single members. 
Results for MME do not follow a general trend, but often, uncertainty is still though often only slightly 
reduced compared to the whole set of selected single runs. 

We demonstrated in this paper that the ensemble approach might allow reducing simulation uncertainty and 
increasing simulation performance. Multiple linear regression models are clearly the best merging schemes 
when applied to R² selected members. Better results are obtained with more members. Nevertheless an 
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optimal number of members cannot clearly be defined and it is rather the maximal number of members 
preventing from unrealistic values. However, this could be also the case as only 4 different model structures 
were available for N predictions. As compared to hydrological predictions in the DMIP or LUCHEM 
experiment, less potential model structures are at hand for predicting N fluxes on the catchment scale. 
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