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Abstract: T here are n umerous l oad est imation m ethods avai lable, som e of w hich a re capt ured i n various 
online t ools. However, m ost estim ators are subject to large biases  statistica lly, and t heir ass ociated 
uncertainties are often  not rep orted. Th is makes in terpretation d ifficult an d th e estimatio n o f trend s o r 
determination of optimal sampling regimes impossible to assess.   

In this paper, we first propose two indices for measuring the extent of sampling bias, and then provide steps 
for o btaining reliable l oad estimates by  minimizing t he bi ases an d making use of p ossible predictive 
variables. The load estimation procedure can be summarized by the following four steps. 

(i) output t he flow rat es at  re gular t ime intervals (e. g.10 m inutes) using a t ime seri es model t hat 
captures all the peak flows; 

(ii) output the predicted flow rates as i n (i) at  the concentration sampling times, if the corresponding 
flow rates are not collected; 

(iii) establish a predictive model for th e con centration data, which incorporates all p ossible pred ictor 
variables and output the predicted concentrations at the regular time intervals as in (i); and 

(iv) obtain the sum of al l the products of the predicted flow and the predicted concentration over the 
regular time intervals to represent an estimate of the load.   

The key step to  th is app roach is in th e development of an  ap propriate p redictive model for concentration. 
This i s achi eved usi ng a ge neralized regression (rating-curve) a pproach wi th a dditional predictors t hat 
capture unique features in the flow data, namely the concept of the first flush, the location of the event on the 
hydrograph (e.g. rise or fall) and cumulative discounted flow. The latter may be thought of as a m easure of 
constituent e xhaustion occ urring during flood e vents. The m odel also has the ca pacity to accomm odate 
autocorrelation in model errors wh ich are t he result of intensive sampling during floods. Incorporating this 
additional in formation can  sig nificantly i mprove th e pred ictability o f co ncentration, and  u ltimately th e 
precision with which the pollutant load is estimated. We also provide a measure of the standard error of the 
load estimate which incorporates model, spatial and/or temporal errors.  This method also has the capacity to 
incorporate measurement error in curred through the sampling of flow. We illustrate this approach using the 
concentrations of total suspended sediment (TSS) and nitrogen oxide (NOx) and gauged flow data from the 
Burdekin River, a catchm ent de livering to  th e Great Barrier R eef. The sam pling biases for NO x 
concentrations range from 2 to 10 times indicating severe biases. As we expect, the traditional average and 
extrapolation methods produce much higher estimates than those when bias in sampling is taken into account. 

Keywords:  Biased sampling, bootstrap, Load estimation, Suspended sediment, Uncertainty, water quality.   
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1. INTRODUCTION 

Quantifying the amount of s ediment, nutrients and pesticides (via a “l oad”) entering into the Great Barrier 
Reef (GBR) is a primary focus for water quality improvement plans that aim to halt or reverse the decline in 
reef health over the next 5 years (The State of Queensland and Commonwealth of Australia 2003). Here, the 
term “load” represents the amount of m aterial (whether sediment, nutrients or pesticides) transported past a 
location in a river over a specified period of time. Substantial work has been undertaken to define loads under 
varying conditions and assumptions and, a large body of literature has been devoted to this topic.  

In th is paper, we are primarily in terested in quantifying th e un certainty in  lo ads, wh ere un certainty is 
comprised int o thre e com ponents: m easurement error,  s tochastic u ncertainty and knowledge uncertainty. 
Many ap proaches in  th e literatu re do not ex plicitly in corporate un certainty. Tho se th at d o, focus on so me 
aspects of uncertainty b ut not all. For exa mple, there are many sim ulation b ased a pproaches t hat tackle 
uncertainty by examining the variability amongst load methodologies (Guo et al. 2002, Etchells et al. 2 005), 
while others develop a n a pproximation f or various l oads est imation ap proaches. T arras-Walhberg & Lane 
(2003) use Monte Carlo simulation to generate alternative log concentration values for their regression model 
and t hus e nable a fam ily of  cu rves t o be  ge nerated. R ustomji an d Wilkinson ( 2009) use t he bootstrap 
technique to resample the residuals a nd place confidence intervals around estimates of load based on a non-
linear regression approach.  

We at tempt t o de velop a general est imation procedure th at prov ides reliab le (with  minimum b ias) lo ad 
estimates and their ass ociated uncertainties. The p rediction for both flow and c oncentration is performed at 
the same regular time-intervals to alleviate sampling biases and correlation is in troduced into the modeling 
process to account for serial dependence.  We acknowledge that there may be times when concentration is at 
best wea kly rel ated t o di scharge.  What we are adv ocating i s t o co nsider ot her ex planatory vari ables and  
attributes of the hydrograph because these additional variables may stil l be useful in e xplaining substantial 
amounts of t he varia bility. In the worst-case scenari o, where t here is no predictiv e powe r, the re gression 
model can be seen to default back to predicting an average concentration, and the load estimated becomes a 
form for the popular average estimator.  

The stru cture of th is paper i s as fo llows. We will first in troduce two  typ es of b ias i ndices m easuring t he 
extent of possible biases in the da ta (Section 2). Section 3 provides the estimation procedures and prediction 
methodology.  The results from applying these methods to the Burdekin catchment are presented in Section 
4. Finally in  Section 5, w e provide some discussion around the methodology and possible implications for 
future sampling. 

2. TWO INDICES MEASURING SAMPLING BIASES 

To illustrate bias sampling consider the following estimates of bias for concentration and flow recorded at 
Inkerman Bridge in the Burdekin catchment. Flow data is gauged and recorded hourly, while concentration, 
in particular NOx and total suspended sediment (TSS) are recorded less frequently.  

Table 1: Illustration of bias in the sampling regime for the Burdekin catchment at Inke rman Bridge. (Data 
courtesy of Miles Furnas and Allan Mitchell, AIMS) 

Year Q  intQ  CQ  Bias  Index 
( qR ) 

Bias Index  
( cR ) 

n 

1995/1996 67 .88 67.09 373.91 1.012 5.57 19 

1996/1997 276.56 27 3.63 1735.68 1. 011 6.34 78 

1997/1998 257.01 25 5.11 2611.64 1. 007 10.24 39 

1998/1999 21 9.73 218.39 574.67 1.006 2.63 70 

1999/2000 435.74 43 3.82 2294.19 1. 004 5.29 100 
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The table above summarises the flow data recorded across five water years, Q  represents the mean recorded 

flow, intQ  represents the mean interpolated flow (hourly) and CQ  represents the mean flow evaluated where 
concentration was measured. The number of concentration records, n, is in dicated by the last co lumn of the 
table. 

 We computed the ratio of the sample average flow to the interpolated flow ( int/qR Q Q= ) and the ratio of 
the fl ow reco rded only when con centration h as been m easured, relativ e t o the in terpolated flow 
( int/c CR Q Q= ).  T hese i ndices m easure the e xtent of the sampling biases. Ta ble 1 shows that t he bia s 
resulting fro m u sing an  in terpolated flow record acro ss all 5  water years is n egligible. Ho wever, t he b ias 
incurred from using flow that is only recorded when concentration is measured are very substantial (up to 10 
times). If we sample concentrations more often at high flows, the sample mean for the concentration will be 
over-represented and bias in load estimate may occur (for methods that use the average concentration). This 
highlights the importance of accounting for biases in the loads estimation procedure. 

 
3. LOAD ESTIMATION 
There are numerous m ethods for estim ating polluta nt loa ds (see, e .g. P hillips et al., 1999; Letche r e t al., 
2002). In general, the total Load, L can now be estimated by 

 
1

ˆ ˆ ˆ ,
M

m m
m

L K c q δ
=

= ∑     (1) 

where ˆ ˆ( , )m mc q are the observed or imputed/estimated values for time interval, m. Note, the time interval δ 

must be sm all such that ˆ ˆ( , )m mc q  can be regarded as a c onstant during each interval and to avoid possible 

bias in L̂ .  The parameter K here is a unit-conversion constant. It is important to note that if the time interval 
for the flow sampling is not a constant, bias will arise when the flow is related to the time intervals. 
The fundamental question now is how to ob tain ˆ ˆ( , )m mc q  at regu lar time in tervals.  We propose using the 
following steps to obtain the most reliable load estimates by minimizing the biases (step i and ii) and making 
use of possible predictive variables (step iii),  

(i) output t he flow rat es at  re gular t ime intervals (e. g.10 m inutes) using a t ime seri es model t hat 
captures all the peak flows, 

(ii) output the predicted flow rates as i n (i) at  the concentration sampling times, if the corresponding 
flow rates are not collected, 

(iii) establish a predictive model for the concentration data and output the predicted ic concentrations at 
the regu lar ti me in tervals as in  (i),  t he predictive m odel sho uld in corporate possible pred ictive 
variables, and 

(iv) obtain the sum of al l the products of the predicted flow and the predicted concentration over the 
regular intervals for each reporting year (e.g. water year). 

 
Step (i) is n ecessary to remove possible bias in the flow data. Fo r example, if th e sample mean of the flow 
data may not be represe ntative of the average water discharge, po tential b ias may o ccur in  the lo ad 
estimation. Nevertheless, step (i) is relatively easy to achieve using a LOESS smoother with a short span for 
instance.  Step (ii) is necessary for matching the corresponding flow data to the concentration data. This step 
becomes unnecessary if the  flow data are a vailable at th e same time when c oncentration data are collected.   
Step (iii) is th e key component and may r equire substantial modelling.  W e will ad opt an  ex tended rating 
curve a pproach and foc us on developing useful pred ictive varia bles to increase t he accuracy of the 
concentration estimates as promoted by Thomas and Lewis (1995).  It should be noted that load estimates can 
still be biased even if we have a well estab lished predictive model when Step (i) and  (ii) are no t followed. 
However, the accuracy of the approach relies heavily on the strength and consistency of the relationship.  We 
rely on the rating-curve approach and extend it in three novel aspects.  

(a).  Develop i nformative vari ables t hat capt ure t he unde rlying hydrological processe s, whi ch m ay 
improve the predictive accuracy.  

(b). Generalize the linear relationship to more flexible non-linear functions (polynomials and splines). 
(c). Allow the model errors to be correlated. 

There are several hydrological phenomena that should be considered in estimating the sediment and nutrient 
loads of riverine systems and the impact of these on the derived load will vary from site to site. "First flu sh" 
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is the phenomenon whereby the first significant channelised flow of the wet season is generally accompanied 
by rel atively hi gh se diment and nutrient co ncentrations (Thomas and Lewi s, 1 995). P recipitation i n GBR 
catchments occurs predominantly within a well-defined, summer wet season  (November to April). The run-
off and  in terflow associated with a wet seaso n’s in itial, flow-inducing precip itation even t tends to  pick up  
unconsolidated, fi ne sedimentary material and nutrients t hat have acc umulated on or j ust bel ow t he land 
surface of the catchment. These materials accumulate due to natural we athering, disturbance, anthropogenic 
activity (e.g. land cultivation) and biomass decay during the relatively long , intervening dry period between 
wet seasons (Wallace et al. 2008) and are readily entrained by the event runoff. There are physical processes 
which res ult i n n on-unique relationships between discharge an d c oncentration at  se veral t emporal s cales. 
Within events, there can be hysteresis in  the concentration-discharge relationship, such that this relationship 
varies to form a clockwise or anti-clockwise loop. Frequently, concentration is higher on the rising limb of 
the hydrograph, due to depletion of sed iment availability during the event (Thomas and Lewis, 1995); and 
possibly also higher rainfall intensity and sediment transport capacity on the rising limb.  

Between events in a given season or year, concentration can generally decline due to depletion of available 
sediment. Thi s depl etion m ay be cause d b y t ransport of material weat hered during prior d ry seas ons an d 
increase in vegetation cover through the season. 

Based on the covariates discussed above we consider the following model 

 
9

0
1
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c xβ β ε
=

= + +∑   (2) 

where 1ix is log (Q), 2ix is th e {l og(Q2)}, 3ix is ti me in  d ays (t), 4ix  is sin(2 / 365.25)tπ , 5ix  is 

cos(2 / 365.25)tπ , 6ix  is the limb (1=rising, -1=falling, 0=normal flush), 7ix  is the cumulative discounted  

flow (CD F), 
0

ˆ(1 ) / (1 )j i
i j

j
a a Q a−

≥
− −∑ .  Here a re presents the discount f actor between 0 and 1 and is 

chosen to be 0.95 per day (and hence roughly 0.5 per fortnight). We intend to further investigate the effect of 
this CDF and report elsewhere. The terms 8 1 6i i ix x x=  and  9 6 7i i ix x x=  are interaction terms and allow the 
effect of the limb to alter according to  flow and the discount factor. In ma trix notation, we can write (2) as  

0log( )  C X β ε= + , w here β  is the p arameter vecto r and  0X  is the n by 10 d esign m atrix.  The  

residuals iε are assumed to follow a first order Autoregressive (AR(1)) process.  It  is important to have the 

ranges of ( , )i ix c and covered in the data or spurious predictions may occur. To this end, it may be necessary 
to impose an upper limit on C.  
 
This format is an e xample of a ge neralized approach. Other covariates exist and may be im portant in some 
circumstances.  What we are proposing here is a generalized framework of USGS model (Cohn et al., 1992), 
and illustrating how it may be used to improve predictive power and the accuracy / precision with which we 
measure pollutant loads, rath er than the set of cova riates for all o ccasions. The same extensions are relevant 
to the functional forms, which may range between simple linear to highly flexible spline relationships.  
 
Using matrix no tation, we can write  th e pred icted con centrations a s 

1
1 1 0 0 0ˆ( ) exp{ ( ' ) }m m Mc X X X X z−
≤ ≤ = , in  which 0X  is the design matrix in  model fitting while 1X  is 

the M by  10 desi gn m atrix f or predicting t he M c oncentrations a t t he desi gned t ime seque nce, a nd 

1,...,{log( )}i i nz c == . For regression models, îc  may be predicted by the flow data via a parametric model. 

In general, we ha ve L  predi cted by  ˆexp( )l ε+  whe re ˆ ˆ ˆm m
m

l c q=∑ . Because 

2
1 1( ) {exp( } exp( / 2}E C E X Xβ ε β σ= + = +  and 2ˆ( ) exp( / 2)m m mE c c σ= , where 2σ   and 2

mσ  

are the variances of ε  and ˆmz ,   our proposed load  estimator with bias correction is given by   
  

 2 2

1

ˆ ˆ ˆ exp{( ) / 2},
M

m m m
m

L T c q s sδ
=

= −∑  (3 )   
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where 2s and 2
ms  are the estim ates of va riance of ε  and ˆmz .   Fe rguson ( 1986) an d K och a nd Sm illie 

(1986) propose at least th ree other ways of correcting this estimator.  We will not focus on fine tuning such 
bias because it is relatively small considering the other types of m odel bias and the ass ociated uncertainties 
which will b e considered below.  Note that 2exp( / 2)s  may be re placed by the smearing estim ate (Duan 

1983), 
1

ˆexp( ) /
n

i
i

nε
=
∑ , where ˆ( )iε  are the residuals from the regression model.   

We sh all b e in terested i n estab lishing th e predictive v ariance of L  in  wh ich a m odel erro r ε  can not be 
eliminated by increasing the sample size.  The model error ε  i s assu med t o ha ve a vari ance 2σ  and 
correlation matrix ( )R ρ  with autocorrelation parameter ρ  which measures temporal correlation.   Denot e 

the vector of the load estimates at the regular intervals as ( )mL , and after some algebra, 

222 2 2
1 2
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             { {1 / log( )} {1 / log( )} ,
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m m m m

L SS
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where ˆ( )f Q  is the regression model on log scale, and 1/ log( )mf Q β∂ ∂ = for the traditional rating curve 

model, 1 1( )T
m m MS X L ≤ ≤=  is a m atrix of K by M (K is the number of parameters), TSS is a sq uare matrix 

of K by K,  and 1α  and 2α  are the coefficient of variation (CV) of the independent measurement error and 
spatial/temporal  random effects in log(Q).  We will illustrate the calculation using different error rates in the 
example. 

4. CASE STUDY: THE BURDEKIN CATCHMENT 

The Burdekin River drains an area of 130,000 km2 and the catchm ent is the s econd largest draining to  the 
GBR lagoon and is the largest in terms of mean gauged annual discharge. The distribution of land use within 
the catchment is represented by approximately 1% cropping, primarily confined to the Burdekin Delta, cattle 
grazing 95% and 4% other uses. Development of the catchment by European settlers began in the mid-1800s 
with th e in troduction of sh eep an d cattle g razing (Lew is et al. 2007) and th e prob able co mmencement o f 
alluvial mining. It is generally accepted that post settlement activities such as these would have increased the 
annual a verage flux of se diment to the  GBR lagoon  (se e e.g., Bel perio 1979) and i n recent yea rs trace-
element analysis of coral cores has provided evidence in support of that proposition (McCulloch et al. 2003;  
Lewis et al. 2007). We use the Burdekin as an initial case study to evaluate and explore the methods that we 
have developed for estimating loads and quantifying uncertainty. 

Data co llected at Ink erman Bridge was collected  b y t he Au stralian Institu te o f Mari ne Science (AIMS) 
between 1987 and 2000 as part of  their r iverine monitoring program for the purpose of calculating annual 
loads. Flow data was rec orded by a Nat ural Resour ces a nd Water (NR W) gauge loc ated at Clare, which 
resides approximately 20km upstream from the sampling site where c oncentrations of TSS an d NOx were 
recorded. 

We fitted different models to a subset of the data (Water Year 1996/1997) as described in Section 3. The best 
model based on GCV is M1 which has intercept, limb, log(Flow), its quadratic term; 2 periodic terms (annual 
and 6 month cycles), and spline of CDF with serial correlations (correlation is estimated to be 0.75). Average 
and extrapolation produce very highly biased estimates due to the opportunistic sampling designs, while the 
rating curve models and ratio (and Beale) estimators perform similarly (Table 2) For TSS our new estimates 
are about 15%  higher than the ratio and Beale’s estimates (when there is a clear relationship indicated in Fig 
1 (top left panel), while for NOx, where there i s no apparent relationship between flow and concentration 
(see bo ttom le ft p anel of Fi g. 1), we obtained sim ilar e stimates to  th e Ratio  co unterparts. The proposed 
methodology provides a natural way of further incorporating possible informative variables and quantifying 
the uncertainties. In Table 2, 95% two confidence intervals (A and B) are given for two sets of hypothesized 
error rates o f 1 2( , )α α . Our framework will also  enable us to study efficiency of different designs.  Designs 
with occasional sampling at the beginning and the end of the water year (although flow is ambient) would be 
able to improve the prediction model.   

3333



Load Estimation for GBR catchments 

 

2
4

6
8

Flow  m3/s
lo

g(
Fl

ow
)

Nov Jan Mar May Jul Sep

-1
.5

-0
.5

0.
5

TSS (g/L) (in green) and NOx (in red) (mg/L)

lo
g(

C
on

c)

Nov Jan Mar May Jul Sep  

5 6 7 8

-1
.5

-0
.5

0.
5

log(Conc) vs log(Flow): TSS and NOx

lo
g(

TS
S

)
4 5 6 7 8

-2
.2

-1
.8

-1
.4

-1
.0

lo
g(

N
O

x)
 

Fig. 1: Plots showing the flow and concentration data (left panels) of TSS (n=78, g/L)and NOx (n=86, mg/L). 
The relationships between the concentration and flow are plotted on the right panels (on log scale). 

Table 2: Estimates o f th e t otal TSS an d NOx lo ad, L̂ , the correcte d load, ˆ
CL , and the 95% confide nce 

intervals assuming 1 2( , ) (0.10,0.05)α α =  and 1 2( , ) (0.30,0.10).α α =  

Load L̂  (t) ˆ
CL  n 95%CI (A) 95%CI (B) Avg Extrp Ratio Beale 

TSS (Mt) 6.98 7.26 78 (5.00, 10.54) (4.36, 12.10) 27.67 37.43 5.99 6.00 

NOx (Kt) 2.02 2.04 86 (1.87, 2.22) (1.75, 2.38) 12.47 11.72 2.01 2.01 

5. DISCUSSION 

The relationship between flow and concentration and the nature of the sa mpling undertaken will dictate the 
type o f m odel requ ired. In  some situ ations, a m odel with  flow and  co ncentration only will p rovide an  
adequate model, however in other situations, although there may not be an obvious relationship between flow 
and discharge, ot her variables such as t he cum ulative discounted fl ow or rising/falling l imb may be 
important. These terms need to be thoroughly investigated in any modeling exercise undertaken.  

Regression estimators can be highly biased, especially if systematic sampling is used in an event responsive 
system (Preston et al. 1992).  Preston et al. (1989) also found that estimates of load produced via a regression 
approach can be less acc urate than those produced by the ratio  estimator if a sm all number of samples are 
collected and the relationship is not well understood. However, in these examples, other covariates were not 
explored an d t he m odels were base d p redominantly on fu nctions o f fl ow. We believe t hat t he ex tended 
regression approach provides a natural way of handling the sampling bias and that other classical methods do 
not have s uch ad vantages. Despite t his, regression-based est imates impr ove when a dequate sam pling has 
been undertaken over a broad range of conditions, thus providing the best estimates with low error, it is  still 
reliable even when there is little n o relationships between the concentration and flow rate. Additional work 
can be ca rried to validate the methodology further and determine what combinations of variables are useful  
for modelling certain types of datasets and to investigate more complicated modeling structures that include 
interactions to determine whether a more complex model is requ ired. We also aim to compare the proposed 
method with others by decimating a dataset with intensive concentration records. 

 

ACKNOWLEDGMENTS 

3334



Load Estimation for GBR catchments 

 

Inkerman Bridge dataset was k indly provided by Miles Furnas and Alan Mitchell (AIMS).  We also wish  to 
thank Rebecca Bartley for internally reviewing this paper and two referees for  their constructive comments.  

 

REFERENCES 

Belperio, A. P. (1979), The combined use of wash load and bed material load rating curves for the calculation 
of total load: an example from the Burdekin River, Australia. Catena 6, 317-329. 

Cohn, T. A., D. L. Caulder, E. J. Gilroy, L. D. Zynjuk, and Summers, R. M. (1992), The validity of a simple 
statistical model for estim ating fl uvial co nstituent lo ads: an em pirical stud y inv olving nu trient load s 
entering Chesapeake Bay. Water Resources Research 28: 2353-2363. 

Duan, N. ( 1983), Sm earing est imate: A no nparametric ret ransformation method. J ournal of t he American 
Statistical Association, 78: 605-610 

Etchells, T.,Tan, K.S .and Fox, D.R. ( 2005),. Quantifying the un certainty o f nutrient l oad estim ates i n th e 
Shepparton irrigation region. Pages 170-176 in MODSIM 2005 International Congress on Modelling and 
Simulation. Modelling and Simulation Society of Australia and new Zealand, Melbourne Australia. 

Ferguson, R.I. (1986), Hydraulics and hydraulic geometry.  Progress in Physical Geography,  10, 1-31. 

Guo, Y.P., Markus, M. and Demissie, M. (2002), Uncertainty of nitrate-N load computations for agricultural 
watersheds. Water Resources Research, 38(10), 1185, doi:10.1029/2001WR001149. 

Koch, R .W. a nd Smillie (19 86), C omment on  ` `River l oads underestimated by  rat ing cu rves'' by  R. I.  
Ferguson.  Water Resources Research,  22, 2121-2122. 

Letcher, R .A., Jakem an, A.J.,  C alfas, M .,  Li nforth, M.,  B aginska, B . a nd La wrence, I.. ( 2002), A 
comparison of catchment water quality models and direct estimation techniques. Environmental Modelling 
& Software 17, 77-85. 

Lewis, S.E., Shields, G.A., Kamber, B.S. and Lough, J.M. (2007), A multi-trace element coral record of land-
use c hanges i n t he B urdekin R iver cat chment, NE , Australia. P alaeogeography, P alaeoclimatology, 
Palaeoecology 246: 471-487. 

McCulloch, M.T., Fallon, S., Wyndham, T., Hendy,E.,  Lough, J. M. and Barnes, D. (2003), Coral record of 
increased sediment flux to the inner Great Barrier Reef since European settlement. Nature, 421, 727-730. 

Phillips, J.M., Webb, B.W., Walling, D.E. and Leeks, G.J.L. (1999), Estimating the suspended sediment load 
of rivers in the LOIS study area using infrequent samples. Hydrological Processes, 13,,1035-1050. 

Preston, S., Bierman, V. and Silli man, S.  (1 989), An evaluation of methods for the estimation of trib utary 
mass loads.  Water Resources Research, 25, 1379-1389. 

Preston, S.D.,  Bierman, J.V.J. and  Silliman, S.E. (1992), Impact of flow variability on error in estimation of 
Tributary mass loads. Journal of Environmental Engineering, 118, 402-418. 

Rustomji, P., and Wilkinson, S.N. (2009), Applying bootstrap resampling to quantify uncertainty in fluvial 
suspended sediment loads estimated using rating curves. Water Resources Research, 44. 

Tarras-Wahlberg, N .H., and Lane, S.  N .  (2003), S uspended se diment yield and  metal cont amination i n a  
river catchment affected by El Nin o events and gold mining activities: the puyango river b asin, southern 
ecuador. Hydrological Processes, 17, 3101-3123. 

The State of Queensland and Commonwealth of Australia. (2003), Reef water quality protection plan: For 
catchments adjacent to the Great Barrier Reef World Heritage area. Queensland Department of Premier 
and Cabinet, Brisbane, see  http://www.reefplan.qld.gov.au/library/pdf/reefplan.pdf. 

Thomas, R . B. and Lewi s, J.  (19 95), An e valuation o f fl ow-stratified s ampling fo r es timating sus pended 
sediment loads. Journal of Hydrology, 170, 27-45. 

Wallace, J., St ewart, L., Hawdon, A.  and Keen, R. (2008), The role of coastal fl oodplains in generating 
sediment and nut rient fluxes to the great barrier reef lagoon in Australia. In: Abstracts: Ecohydrological 
Processes and Su stainable Flo odplain Man agement Op portunities a nd Con cepts for Water Hazard  
Mitigation and Ecological and Socioeconomic Sustainability, 19-23 May 2008. Lodz, Poland.  

 

3335




