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Abstract: The transport of solutes in soils is often modelled using the advection diffusion equation. 
Analytical solutions are only available for overly simplistic scenarios, so numerical formulations are applied 
in most models (Vanderborght et al. 2005). However, modelling of advection problems is not a trivial task 
with problems ranging from numerical instability to mass conservation, specially when modelling of 
discontinuities and steep fronts are required (Leonard 1979; Leonard 1991).  

One of several methods that can be used to overcome problems associated with solving the advection 
diffusion equation was proposed by Leonard (1979), using quadratic upstream interpolation to solve the 
advection diffusion equation. This method is known as Quadratic Upstream Interpolation for Convective 
Kinematics with Estimated Upstream Terms (QUICKEST). The model presented here is the solute transport 
component of WASOM1, the Water and Solute Movement in 1 dimension. WASOM1 uses a cascading 
bucket model coupled with the QUICKEST scheme with a monotonic resolution scheme (ULTIMATE) to 
simulate the transport of solutes in soils. 

Comparison of the results obtained using the 
ULTIMATE code from WASOM1, the analytical 
solution and HYDRUS (Simunek et al. 2005) different 
finite element implementations are shown in Figure 1. 
The solution due to WASOM1 predicts the position of 
the solute front accurately and is free of oscillations. 
The other methods based on finite elements (FE) either 
did not predict the position of the front correctly, due to 
numerical dispersion or suffered from oscillations. 

The solute transport scheme is independent of the water 
balance, so it can be adapted for use with other water 
balance models. WASOM1 is capable of simulating the 
transport of non-adsorbed solutes, solutes that follow 
linear, Langmuir and Freundlich isotherms and undergo 
zero or first order decay. The scheme is mass 
conservative avoiding mass loss common in models 
such as MT3DMS (Zheng and Wang 1999). It also 
produces minimal numerical dispersion. The basic 
numerical scheme of WASOM1 is described and its 
advantages over other methods are presented by comparison with an analytical solution and other methods. 
Finally, and example of its application the transport of bromide in soils is given. 

 

Keywords: water quality, numerical methods, numerical dispersion, advection diffusion 

Figure 1.  Analytical and numerical solutions for 
the transport of a tracer. Finite Element (FE) 

solutions obtaiuned from HYDRUS (Simunek et 
al. 2005). 
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1. INTRODUCTION 

The increase in interest on catchment management has seen an increase in the number of models available to 
simulate water and solute transport, with varying degrees of complexity and accuracy (Borah and Bera 
2003). In models that simulate transport of solutes in the soil profile, the movement is usually described 
using the advection-diffusion equation, with extra terms to account for adsorption and reaction (Zheng and 
Bennett 2002). The form of these terms varies according to the problem in hand, such as linear or non-linear 
adsorption or first and second order reactions. The equations associated with these models are usually non-
linear and each problem has its own set of boundary conditions.  In real situations, soil properties and initial 
conditions are non-uniform, so numerical methods are required for the solution of the governing equations as 
analytical solutions are only available for simple cases (Vanderborght et al. 2005). In particular, numerical 
modelling of advection dominated problems on the presence of discontinuities and steep fronts are not trivial 
(Leonard 1979; Leonard 1991). 

Finite difference methods can be used to solve the advection dispersion equation, either using backward, 
forward or central differencing. This methods however can result in artificial oscillation (under or over 
shooting) or numerical dispersion due to truncation errors of the discretization. Application of backwards 
finite difference results in an implicit scheme which is always convergent but is computationally expensive 
and introduces considerate numerical dispersion (Zheng and Bennett 2002). The use of central differencing 
(such as Crank Nicholson schemes) in the discretization can cause numerical oscillation in the form of 
“wiggles” when implicit schemes are used. If an explicit formulation is used instead the solution often is non-
convergent (Leonard 1979). Numerical oscillation can be minimized by the use of upstream weighting, but 
this leads to considerable numerical dispersion owing to truncation errors (Zheng and Bennett 2002). 
Another solution for artificial oscillation is the use of finer grids, with a choice based on the Peclet number: 

 * /Pe u x D= Δ  (1) 

where u is the flow velocity [L T-1] , Δx is the grid spacing [L] and D is the diffusivity [L2 T-1]. A Pe number 
< 2 can greatly reduce or eliminate numerical oscillation, but usually the associated computational cost due 
to excessively fine grids is impractical (Zheng and Bennett 2002). 

The alternative of upstream differencing introduces artificial numerical diffusion terms and becomes 
inaccurate due to large truncation errors. Again, these problems can in theory be solved with grid refinement, 
but in most practical applications the degree of refinement required is computationally prohibitive (Leonard 
1979). Another possible solution is the introduction of an apparent numerical diffusion coefficient, to 
“counteract” the numerical dispersion introduced by the discretization, but this can only be use for simple 
problems where the numerical dispersion coefficient can be estimated (Zheng and Bennett 2002). The 
introduction of artificial damping also affects the accuracy of the method (Leonard 1979). 

One of several methods that can be used to overcome these oscillation and truncation problems was proposed 
by Leonard (Leonard 1979), using quadratic upstream interpolation is used to solve the advection diffusion 
equation. This method is known as Quadratic Upstream Interpolation for Convective Kinematics with 
Estimated Upstream Terms (QUICKEST). The model presented here is WASOM1, the Water and Solute 
Movement in 1 dimension, and it uses the QUICKEST scheme with a monotonic resolution scheme 
(ULTIMATE) to solve the advection diffusion equation. The water balance is solved using a cascading 
bucket model which provides the water fluxes for the solute transport solved with the QUICKEST scheme. 
The solute scheme is independent of the water balance, so it can be used with other water balance models. 

WASOM1 is capable of simulating the transport of non-adsorbed solutes, solutes that follow linear, 
Langmuir and Freundlich isotherms and undergo zero or first order decay. The basic numerical scheme to 
solve the advection diffusion equation in WASOM1 is described and its advantages over other methods are 
presented by comparison with an analytical solution and other methods. Finally, and example of the 
application of WASOM1 is given by the simulating the transport of bromide in soils. 

2. MODEL DESCRIPTION 

Using the water fluxes from the water balance, WASOM1 solves the advection-dispersion equation with 
terms accounting for reaction and adsorption:  

 1 2b b

C C C u C
D C C

t t x x x

θθ ρ θ λ θ λ ρ∂ ∂ ∂ ∂ ∂ + + = − − ∂ ∂ ∂ ∂ ∂ 
 (2) 
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Where C is the dissolved concentration of a solute 
[M L-3], θ is the porosity [L3 L-3], t is the time [T], 
C is the solute concentration adsorbed on the 
subsurface solids [M L-3] [M L-3], λ1 is the first-
order reaction rate for the dissolved phase [T-1], 2λ  

is reaction rate for the sorbed (solid) phase [T-1] 
and ρ bρ is the bulk density [M L-3]. 

2.1. QUICKEST Scheme 

The QUICKEST method uses a three-point 
upstream weighted interpolation to obtain a 
numerical scheme which is stable in highly 
advective flows, without a substantive increase in 
computational load in comparison to the upstream 
or central differencing schemes.  

However, as demonstrated by Leonard (Leonard 
1991), several numerical schemes such as second 
order schemes (central and upwind), third order 
schemes such as QUICKEST and even higher order 
methods are prone to small oscillations and/or 
overshooting, specially near sharp gradients. Thus, 
the method used in WASOM1 is modified to use 
the ULTIMATE (Universal Limiter for Transient 
Interpolative Modelling of Advective Transport 
Equation) QUICKEST method to achieve 
monotonic resolution. The adoption of the 
ULTIMATE strategy involves minimal extra 
computational cost while avoiding oscillations that 
could lead to appearance of negative concentrations 
near steep fronts. 

The benefit of the ULTIMATE scheme can be seen 
by comparing the top and bottom sections of Figure 
2, which shows the solutions after a translating of 45 Δx to the right of a sine-squared wave. For more detail, 
please referred to Leonard (1991) 

As can be seen from Figure 2, the QUICKEST solution is in excellent agreement to the analytical solution, 
but for the overshooting which lead to negative concentrations. In the ULTIMATE scheme, introduction of 
the universal limiter increases accuracy near steep fronts without causing spurious oscillations. 

2.2. Coupling the water balance and the solute transport 

In WASOM1, the water balance and the solute transport are solved independently, using different spatial and 
temporal discretizations. The water balance operates on a daily time step and its spatial discretization is 
chosen according to the soil information available and usually it will be much coarser than the spatial 
discretization of the solute code. The solute code further divides the soil layers of the water balance using a 
finer discretization to minimize numerical dispersion. Hence, one of the soil layers from the water balance 
can contain several solute layers. The only requirement is that the boundary between layers in the water 
balance model layers matches one of the solute model boundaries. The flow between the different solute 
layers (embedded in a single water content layer) is calculated using a linear interpolation while maintaining 
the overall water content within the water layer.  

The QUICKEST method has two stability criteria to avoid oscillation, based on the Courant number Co and 
the diffusion parameter χ, defined as (Leonard 1979): 

 1rCo u t / x= Δ Δ ≤  (3) 

 2 0 5r D t / x .χ = Δ Δ ≤  (4) 
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Figure 2. Numerical and analytical solutions for the 
translation of a sine-squared wave using QUICKEST 

(top) and ULTIMATE QUICKEST (bottom). 
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The stability region of the QUICKEST method can be extended to Co < 2, but is subject to further 
restrictions on the diffusivity parameter value. As the spatial discretization of the solute transport is fixed at 
the model setup, the only parameter available to guarantee the stability of the QUICKEST scheme is through 
variable time stepping. The time step chosen is the minimum between daily (water balance time step) or one 
of the values required by constraints given by eqns 3 and 4.  Note that the eqns 3 and 4 allow for stability in 
cases where advective flow is dominant (i.e., large PE numbers). 

The water balance model used here is a cascading bucket model with modifications to allow for improved 
soil evaporation, see (Cook et al. 2006) for details.  

2.3. Adsorbed solute 

WASOM1 is also capable of modelling adsorbed solutes, as a mass transfer process between the dissolved 
phase and the porous medium (solid phase). WASOM1 follows the assumption of local instantaneous 
equilibrium, where the adsorption/desorption are much faster than the flow velocity. The relationship 
between the adsorbed and dissolved concentrations can be described using three possible isotherms: linear, 
Langmuir and Freundlich. The isotherms can be incorporated into the transport model using a retardation 
factor, R [M L-3] defined as (Kutílek and Nielsen 1994; Zheng and Bennett 2002): 

 
C

C
R b

∂
∂+=

θ
ρ

1  (5) 

So the transport equation can now be written as: 
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Hence for the Freundlich isotherm for example: 

 a
f CKC =  (7) 

 11 −+= a
f

b aCKR
θ
ρ

 (8) 

where Kf is the Freundlich constant [M1-a L-3(1-a)] and a is the Freundlich exponent. 

A common occurrence with solute transport models is 
lack of mass conservation such as in MT3DMS 
(Zheng and Wang 1999). In the simulation for 
adsorbed solutes (as well as non-adsorbed), WASOM 
conserved mass in all instances.  There are two 
features in WASOM that ensure mass conservation, 
the correct use of the retardation factor and the 
treatment of the adsorbed mass/dissolved mass in 
absence of water flow but in presence of evaporation.  

In the MT3DMS (Zheng and Wang 1999) and WASOM codes, the retardation factor R is calculated for 
every cell in the model at the beginning or every time step (or sub-step if needed to avoid oscillation). The 
difference in approach is that MT3DMS uses that factor based on the “local” cell concentration for every 
flow of material entering or leaving the cell whereas WASOM on the other hand uses the retardation of the 
upstream and downstream cells were appropriate For pure advection, constant spacing Δx and time step Δt 
the fluxes entering and leaving the cells in Figure 3 are given by: 

1 1

1 1

1 /

/ /
i i i

i i i i i i

WASOM

for i tu C xR

for i tu C xR tu C xR
− −

− −

−  −Δ Δ
 Δ Δ − Δ Δ

  1 1

1

1 /

/ /
i i i

i i i i i i

Local Conservation

for i tu C xR

for i tu C xR tu C xR
− −

−

−  −Δ Δ
 Δ Δ − Δ Δ

(3) 

As R is dependent on C, it is obvious that if Ci-1 and Ci are different, so will Ri-1 and Ri be. If one uses only 
the local concentration, Ci and Ri are used to calculate the fluxes in and out of cell “i”, but Ri-1 is used to 
calculate the flux leaving cell “i-1”. In the local conservation scheme, the fluxes out of “i-1” and the flux into 

Figure 3: Advection only schematic  
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“i” are calculated using a different retardation factor and this may cause a mass conservation problem. The 
flux leaving cell “i-1” is divided by Ri-1 and hence it can be different from the flux entering cell “i” as it is 
divided by Ri 

3. RESULTS 

The performance of the model was tested by comparisons with analytical solutions and also the simulation of 
bromide transport in field plots. Here, we consider the transport of a non-adsorptive conservative solute in a 
semi-infinite column with a uniform initial concentration and a constant boundary condition. The analytical 
solution is given by Wexler (1992). The test conditions are identical of the test problem by Huang et al 
(1997), with a constant flow velocity of 4 cm/d and dispersivity of 0.16 cm. At the inflow boundary, the 
solute concentration was fixed at 1 g.cm-3 for a period of 20 days. The Peclet number was equal to 25, the 
time step was 0.1 d and the grid spacing was 1 cm.  

Comparison of the results obtained using the ULTIMATE code from WASOM1, the analytical solution and 
HYDRUS (Simunek et al. 2005) with different finite elements implementations is shown in Figure 1. It is 
clear that all the other finite element (FE) methods either did not predict the position of the front correctly 
due to numerical dispersion (Upstream Weighting FE and Galerkin FE with Artificial dispersion) or suffered 
from oscillations (Galerkin FE). WASOM1 predicts the position of the front accurately and is free of 
oscillations. 

A second test of WASOM was to simulate the transport of bromide in soil plots (Verburg et al. (1996), 
comparing its performance against both measured data and simulations using SoilWat (Probert et al. 1998) 
and SWIM (Ross et al. 1992). In this field experiment, 12 plots were used to measure the leaching of 
bromide from May to November. Bromide was injected at four occasions a week apart at a depth of 2 cm and 
concentration of 0.16 mol/m2 and concentration profiles were subsequently measured at 3 occasions. For 
more details, please refer to Verburg et al (1996). 

The parameters used in the simulation to simulate the soil in WASOM1 are shown in Table 1. Other 
parameters used in the simulation are: 

• Diffusivity of bromide in water = 2x10-9 m2/s 
• Dispersivity = 0.15 m (Beven et al. 1993); 
 

Table 1. Soil properties for the WASOM1 simulation of the Wagga dataset 

Layer Hydraulic Conductivity (m/d) Water Diffusivity (m2/s) Porosity Field 
Capacity 

Wilting 
Point 

Z (m) 

1 1.2 0.088 0.29 0.2 0.15 0.1 

2-5 0.87 0.088 0.29 0.2 0.13 0.2-0.5 

6-10 0.1308 0.088 0.3 0.23 0.18 0.6-1.0 

11-13 0.877 0.088 0.3 0.173 0.15 1.1-1.3 

14-15 1.68 0.088 0.32 0.191 0.2 1.4-1.5 

16-18 1.68 0.088 0.32 0.23 0.2 1.6-1.8 

19-20 1.68 0.088 0.32 0.256 0.2 1.9-2.0 

 

Rainfall was identical as used by Verburg et al (1996), while potential evaporation was calculated by 
APSIM-SoilWat, on basis of weather information. However, while in the experiments the bromide was 
injected at 2cm, in the modelling it was added at 2.5 cm (5 cm layers) or 5 cm (10 cm layers), as the model 
assumes that the mass is concentrated at a node at the centre of the layer. 

The results for the simulated concentrations in SoilWat, SWIM and WASOM as well as the 95 % confidence 
interval of the measured concentration are shown in Figure 4. WASOM 1 and SWIM reproduce the shape 
measured bromide concentration curves very well, with some small disagreements in the magnitude of the 
peaks. In general, the results from WASOM1 are very satisfactory, with quality of results and order or errors 
of a similar magnitude as reported for SWIM and SoilWat. The use of 5 or 10 cm layers for the solute model 
did result in small differences in the modelled concentrations, however the differences are not significant in 
this context.  
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Figure 4: Comparison between WASOM1 and experimental (shown as histograms of 95% intervals around 
the mean for each depth interval) and modelling results from Verburg (Verburg 1996). 

 

Table 2. Total solutes at different depths and dates as modelled by WASOM1 and measured Verburg et al 
(1996). 

  Total solutes (mol/m^2) 

Date Depth (cm) Measured Modelled (5 cm layers) Modelled (10 cm layers) 

23-Jun 0-50 0.159 0.160 0.160 

0-90 0.16 0.160 0.160 

21-Jul 0-50 0.146 0.154 0.159 

0-90 0.16 0.160 0.160 

25-Nov 0-50 0.002 0.003 0.009 

0-90 0.029 0.046 0.049 

4. DISCUSSION 

An analysis of Table 2 and Table 3 show that the model’s predictions compare well with either the measured 
or the model’s results from Verburg et al(1996) study, with good agreement in the total water and solute 
present at different depths. The predicted drainage rates are slightly higher than the rates that were predicted 
by Verburg et al(1996), however this over prediction is attributed only to the water balance model here, with 
no relation to the solution scheme of the advection diffusion equation. 

Table 3. Total water at different depths and dates as modelled by WASOM1 and measured Verburg et al 
(1996). 

  Total water (mm) 

Date Depth (cm) Measured Modelled 

23-Jun 0-50 99 99.1 

0-90 181 191.1 

21-Jul 0-50 113 100 

0-90 215 192.0 

25-Nov 0-50 109 98.6 

0-90 197 190.6 

 

Verburg et al (1996) remarked that SWIM predicts the transport of bromide fairly well, whilst the results for 
SoilWat are somewhat poorer in the initial stages failing to reproduce the peak around 20-30 on July 21st and 
under predicting the subsequent transport.  The results for SWIM and WASOM1 are in good agreement, with 
WASOM1 showing a larger flushing of the profile by the end of November, but this is due to the over 
prediction of the water fluxes by the water balance model. For both models the prediction of the solutes is 
closely linked with the correct prediction of water content and fluxes. The same is certainly true for 
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WASOM1, where different parameterizations (not shown) which overestimate the modelled fluxes by more 
than 20% resulted in a complete flushing of the Bromide from the 0-90 cm profile by November 25th. 

5. CONCLUSIONS 

This study introduced WASOM1, a water balance model coupled with a numerical solution of the advection 
diffusion equation. The advantages of the quadratic interpolation scheme QUICKEST with the universal 
limiter for monotonicity used to solve the advection solution equation is shown for two analytical solutions. 
The numerical scheme avoids numerical oscillations and has minimal numerical dispersion, with clear 
advantages over other finite element methods that use upwinding or artificial dispersion for stability. 

WASOM1 was also applied to simulate the one dimensional transport of bromide in field plots. The model 
was capable of accurately predicting the water fluxes and the transport of bromide in the soil profile, with its 
performance on a similar level as SWIM but with fewer limitations on maximum Peclet number for the 
simulations. 
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