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Abstract: Numerical models used nowadays in oil reservoir characterization are increasing in com-

plexity, due in part to the progressive decline of the world oil reserves. There is a greater need to model the 

complex spatial heterogeneity and fluid flow in the subsurface. With more involved models we expect that, 

once properly calibrated, better forecasts and depletion strategies can be made. This calibration process re-

quires in essence the solving of an inverse problem.  

In the oil industry there are two main trends within model inversion. The first one, based on filtering, can be 

efficient from a computational point of view, but it relies heavily on the linearity of the models. In order to 

deal with nonlinear cases, not infrequent in oil reservoir characterization, a purely optimization approach can 

be adopted. The inversion problem is formulated as minimizing the mismatch function between observations 

and the output of the numerical models. These observations are functions of space and time. If the level of 

uncertainty in the data acquisition is known, this information can be included in the mismatch function. The 

optimal search is carried out by adjusting model parameters, typically one or more for each of the grid-points 

of the reservoir discretization. The model inversion optimization problem is of a large-scale nature, with a 

nonlinear and nonconvex objective function, that often involves time-expensive simulations. Additionally, 

this problem is generally ill-conditioned, because the number of degrees of freedom usually is larger than the 

number of observations available. 

In this work we present a robust and fairly efficient methodology to deal with these difficulties in the frame-

work of oil reservoir characterization. The ill-conditioned character of the optimal search can be attenuated in 

two ways. By principal component analysis (PCA) the optimization search space can be projected to a sub-

space of much smaller dimension, while keeping consistency with prior spatial geological features already 

known for the reservoir under study. The number of optimal solutions can be reduced further by increasing 

the diversity of the data observed. In this research we combine flow production measurements (localized 

around wells and of high temporal periodicity) with seismic data (spatially distributed and of lower temporal 

periodicity). This data integration methodology can be extended to any observable for which a numerical 

model is available. 

The numerical models in the optimization process frequently consist of complex simulators, and therefore, 

invasive techniques to extract analytic derivative information are either not possible or prone to a time-

consuming implementation. Besides, cross-disciplinary data integration in the model inversion makes this 

difficulty more evident. The drastic reduction in the number of optimization variables obtained by PCA al-

lows the use of numerical derivatives of the cost function. Within a distributed computing framework these 

approximate derivatives can be calculated efficiently. In our scheme we also consider several derivative-free 

algorithms. These methods, besides being mathematically sound and amenable to being parallelized, have 

been observed to perform robustly when noise is present in the objective function. 

In this paper we will present the spatio-temporal model inversion scheme described above and illustrate its 

application to oil reservoir description by means of examples extracted from realistic cases. 
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1. INTRODUCTION 

One of the challenges in modeling reservoirs is the highly heterogeneous spatial distribution of reservoir 

properties, including variations in porosity, permeability, and facies, all of which can impact the flow. Inte-

grating data of different types and scales can help to address this challenge.  

Production data are measurements of pressure and flow rate in producer and injection wells. Well locations 

are limited in number, but the measurements there are repeated frequently. Because these data are only at a 

few locations, inverting for the model parameters can be a highly non-unique problem. Seismic data, on the 

other hand, has large spatial coverage and is one of the key technologies for characterizing reservoirs. Quanti-

tative seismic interpretation involves using rock physics to predict reservoir parameters, such as lithologies, 

porosities, and pore fluids, from seismic attributes. While seismic measurements are available over a much 

larger spatial extent, they are repeated much less often than production data.  

Combining flow measurements (localized around wells and of high temporal periodicity) with seismic data 

(spatially distributed and of lower temporal periodicity) helps to better constrain the inversion problem. Con-

siderable literature exists on estimation of reservoir parameters based on only one kind of observable, typi-

cally either production history or seismic data. A very efficient methodology for assimilating production data 

that keeps geological consistency in the solution is presented in Sarma et al. (2006). However, that procedure 

is invasive with respect to the flow simulator (and thus not straightforward to implement) and is not robust 

with respect to being trapped in one of the multiple solutions. The approach in Maschio et al. (2008) is not 

invasive for the production simulation and, because of distributed computing and a parameter reduction, is 

fairly efficient. But this parameter reduction, unlike in Sarma et al. (2006), is not performed systematically. 

Integration of disparate data has been suggested in a number of publications (Huang et al., 1997, and Aanon-

sen et al., 2003). Though these clearly identify data integration as a means for better constraining the prob-

lem, they do not provide a clear and precise optimization methodology. 

This paper aims at presenting a robust, general and mathematically sound methodology for inverse modeling. 

We stress that this scheme is easy to implement and, if distributed computing resources are available, it can 

be fairly efficient. The integration of data of distinct nature provides the approach with robustness with re-

spect to the natural ill-conditioning of the inversion problem. The parameter reduction step proposed acceler-

ates the whole procedure and endows it with geological consistency. Though here applied to the estimation of 

oil reservoir parameters, the methodology can be easily adapted for other inversion problems. 

2. METHODOLOGY: FORMULATION OF THE PROBLEM AND APPROACHES 

We formulate the model inversion problem from an optimization point of view. A popular alternative ap-

proach by filtering techniques (Evensen, 2003) relies heavily on linearity assumptions that are not present 

explicitly in a formulation based on nonlinear optimization. This means that we are able to characterize the 

solution as satisfying the first order necessary conditions for local optimality.  

We refer to the model (inversion parameters) by n
RMm ⊂∈ , and M is the set of admissible models. The 

admissibility criteria can be formulated in terms of geological consistency, for example. The model m can be 

a physical property (permeability and/or porosity) or an indicator (facies) associated with every grid block. 

Thus, n  is typically at least a few thousands. The optimization problem is stated as follows
1
 

( ) 2

M

* ||||minarg m
m

OmOm −=
∈

,       (1) 

where m
ROm ∈  comprises all the observables in the inversion, and ( ) m

RmO ∈  represents these same ob-

servables computed numerically for m. In the norm (Euclidean in this work) we can take into account uncer-

tainty in the data acquisition, and include weights/normalization for different components in the observables. 

Usually we have a much larger number of inversion parameters than of measurements ( mn >> ), and there-

fore the optimization problem in (1) is ill-conditioned. This work proposes different ways to reduce the num-

ber of optimal solutions. 

Firstly, if several observables of disparate nature are considered, e.g. ( ) ( ) ( )[ ]mOmOmO 21  ,=  with 

( ) 1m

1 RmO ⊂ , ( ) 2m

2 RmO ⊂  and mmm 21 =+ , then the ill-conditioned character of (1) is alleviated, be-

cause one observable acts as a regularization term for the inversion of the rest. Obviously, the observables 

                                                 
1 We use the notation arg min for indicating the optimizer of the corresponding cost function. This optimizer is usually 

further denoted by a star super index. 
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should not be functions of each other. Such observables can be obtained by considering physical quantities 

intrinsically related to variations in space and time, respectively. Examples in reservoir model inversion are 

crosswell tomograms and flow production data. 

Secondly, we can expect a better conditioned optimization problem if the number of parameters is decreased. 

Instead of searching in n  dimensions, we consider a subspace of dimension mn R < . This subspace selection 

is not arbitrary and essentially aims at reducing, by Principal Component Analysis, the correlation between 

inversion parameters. It can also be interpreted, from a data compression perspective, as the Karhunen-Loève 

Transform. The statistical information needed is obtained from a prior knowledge of the reservoir, and pro-

vides the inversion with geological consistency. 

Local inversion schemes are more efficient than global ones; however, the solution from a local optimizer 
depends strongly on the initial guess (Nocedal and Wright, 2000). In multimodal problems, as is the case for 

inverse modeling, local optimization has to be used with care. As a third way to alleviate the impact of multi-

ple optima, we present a relatively inexpensive strategy for obtaining a good initial guess. This procedure, 

thanks to the earlier mentioned parameter reduction, is based on solving approximately a few simple one-

variable optimization problems. This computation can be seen as a global exploration stage that increases 
robustness with respect to local optima. 

Every simulator related to the observables is considered as a black box. The motivation for this approach is to 

have ease of implementation and extension. Though some simulator-invasive techniques, such as adjoint sen-

sitivity analysis (Cao et al., 2003), can accelerate significantly the search, their application is often not at all 

trivial (incorporation of new observables) or even not possible (source code unavailability). Optimization 

schemes using black-box simulators (in absence of parameter reduction) have a computational cost per itera-

tion of roughly n  observable simulation runs (e.g., gradient-based optimizers with numerical derivatives). 

This cost can be prohibitive with large n  and complex simulators. By reducing the number of parameters to 

Rn  and distributing simulations in a cluster with a number of nodes comparable to Rn , we can obtain a 

fairly efficient methodology.  

3. A ROBUST SCHEME FOR INVERSE MODELING 

This section describes in more detail the three ways suggested above for coping with multimodal oil reservoir 

inversion problems. The model m to estimate is a facies indicator for every grid block in the reservoir.  

3.1. Observables of disparate nature 

The first observable ( )mO1  refers to flow data, in particular the total water injection and oil production cu-

mulative rates during 90 days of reservoir exploitation, resampled every 10 days (therefore, 

201010m1 =+= ). The production data is computed by solving the discretized reservoir flow equations for 

fluids in porous media (Aziz and Settari, 1979). For obtaining this observable we use Stanford’s General Pur-

pose Research Simulator (GPRS), but due to the general black-box approach, any other software could be 

employed. In our case, the unknown parameters in these equations are the permeability and porosity fields. 

Given a facies distribution, we compute the associated porosity field by regression with respect to well data. 

We assume that porosity and permeability are related by the Kozeny-Carman equation (Mavko et al., 1998) 

with parameters regressed against well data.  

The second observable ( )mO 2  is associated with seismic tomography. Seismic tomography estimates sub-

surface properties (seismic velocity or attenuation) by analyzing elastic wavefield propagation from sources 

to receivers. Hence, tomographic reconstruction is itself an inversion. In crosswell tomography, sources and 

receivers are positioned at two wells. We consider two classes of tomography: diffraction and traveltime to-
mography. In diffraction tomography (Stewart, 1991) scattered wavefields are inverted to estimate seismic 

velocities. In our case we have two crosswell regions, each a 20x20 matrix of velocities (hence, 

800400400m2 =+= ). Traveltime tomography is based on only the arrival times between source-receiver 

pairs, and velocities are then inverted from these times. Our observables are the traveltimes themselves, with-

out inversion. This accelerates the computation, and also can reduce the ill-conditioning. In our case, the ob-

servable comprises two matrices corresponding to the traveltimes between two sets of 10 sources and 10 re-

ceivers. The entry (i,j) in each matrix is the traveltime from source i to receiver j. Therefore, for traveltime 

tomography 200100100m2 =+= . The input for the seismic tomography simulator is obtained from the 

model m, the associated porosity, and the production observable, together with rock physics relations be-

tween porosity, saturations, and elastic velocities (Mavko et al., 1998).  
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Figure 1. Layer 4 for the (a) true original, (b) true reconstructed, (c) random from { }N

1kk =
m original, and (d) random from 

{ }N

1kk =
m reconstructed models. The original facies model is binary valued but in the PCA appears with continuous values. 

3.2. Parameter reduction 

The reduction in the number of parameters from n  to nn R <<  (with mn R < ) is motivated by the need to 

alleviate the problem of multiple solutions, as well as reduce the overall computational cost. Principal Com-
ponent Analysis (PCA) optimally selects a subspace from a larger space. Given N possible models 

{ } nN

1kk RMm ⊂⊂
=

, PCA looks for an affine transformation ( )( ) µsµmsm +−=∑
=

i
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mized. The optimal solution (Miranda et al., 2008) implies that ∑
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a symmetric, positive semidefinite matrix. The average reconstruction energy for this transformation satisfies 
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The selection of the N models { }N

1kk =
m  is crucial and is done based on prior information. In this work, 

knowledge of the reservoir geology in the form of the so-called training image (Strebelle, 2002), together 

with facies obtained from the wells, allow the generation, by means of a multi-point geostatistical algorithm 

(Strebelle, 2002), of 1000N =  model realizations, all conditioned to the prior information. These realizations 

are used to compute the matrix C. By PCA, the number of inversion parameters is reduced from 4000n =  to 

30n R = . We show in Fig. 1 two of these models (one of ten layers) and their corresponding reconstruction. 

3.3. Local optimization, initial guess computation and distributed computing 

For efficiency, we consider local optimizers as they are intrinsically faster than the global counterparts. How-

ever, the performance of local optimizers hinges on the initial guess selection. Inspired by the decorrelating 

properties of PCA we present a sound procedure for computing an initial guess. The matrix C in (2) is an 

approximation of the covariance matrix for the model. PCA diagonalizes C, eliminating correlation between 

the new parameters. Moreover, from (3) we can see that the new parameters (the coefficients in the new basis 

{ } Rn

1ii =
s ) can be ranked: each eigenvalue iλ  indicates the contribution of each eigenvector is  to the total vari-

ance. This suggests that a coordinate search could reduce the mismatch considerably in a few iterations. For 

efficiency, we optimize coarsely along only the three most important coordinates. This coarse search provides 

the local optimizers with some global search capabilities. From PCA we can determine the bounds for the 

optimization in (1) with the new parameters as optimization variables. The dynamic range (standard devia-

tion) for the new parameters can be estimated at negligible computational cost. We use (+/-) twice the stan-

dard deviation of the first and most important parameter as its optimization bounds, while 1i λλ  scales 

these bounds for the other parameters. 

We compare three different optimization methodologies. First, the gradient-based nonlinear optimizer 
SNOPT (Gill et al., 2005) is applied with a gradient estimated by first order finite differences. This approach 
hco 

4209



Echeverria and Mukerji, A Robust Scheme for Spatio-Temporal Inverse Modeling of Oil Reservoirs 

 

    
(a) (b) (c) (d) 

Figure 2. Layer 4 after model inversion by the local optimizer SNOPT. Diffraction and traveltime tomographies are used 

in (a)-(b) and (c)-(d), respectively. The initial guess is as in Section 3.3 ((a) and (c)) or zero ((b) and (d)). 

combined with parameter reduction and distributed computing can be fairly efficient. The dynamic range 

information indicated above can help in the delicate step of selecting the perturbation size in the gradient es-

timation. We also test two derivative-free optimization schemes: Generalized Pattern Search (Kolda et al., 
2003) and Hooke-Jeeves Direct Search (Hooke and Jeeves, 1961). Derivative-free methods (Conn et al., 

2009) do not employ any derivative information explicitly, and recent active research has strengthened their 

mathematical foundations. Since most derivative-free techniques are amenable to distributed computing, they 

can perform efficiently if a cluster is available. In absence of distributed computing resources, Hooke-Jeeves 

Direct Search, essentially a coordinate search, can still be reasonably efficient. Based again on the decorrelat-

ing properties of PCA, we expect it to be a good alternative when implemented serially. In addition, we also 

test a global optimizer, namely a genetic algorithm (Goldberg, 1989).  

The optimization schemes considered in this work, at the expense of ease of implementation, use and exten-

sion, often require a large number of cost function evaluations. However, these computations can be distrib-

uted. Additionally, with parameter reduction the whole approach can be efficient. We can also assume that 

parameter reduction strategies exist in most disciplines of applied science. 

4. CASE STUDY: A SUBSET OF STANFORD VI SYNTHETIC RESERVOIR 

4.1. Case description 

The case study is based on a synthetic dataset (with 20 x 20 x 10 = 4000 cells; i.e., it has ten layers) extracted 

from the Stanford VI reservoir (Castro, 2007). This realistic reservoir is a very good framework for compar-

ing model inversion methodologies since the solution *m  is known. We simulate the operation of a so-called 

five-spot well pattern (four injectors in the corners, and one producer in the center of the domain) first during 

90 days. The optimization variable is a facies indicator (i.e., sand or shale) at every grid block. The produc-

tion observable consists of the total cumulative oil production and water injection, obtained at intervals of ten 

days. We study two different types of seismic observables: diffraction and traveltime tomography. Both of 

them are computed along the two perpendicular crosswell sections from the injectors, and only at the end of 

production. Principal Component Analysis (PCA), based on 1000 model realizations and constrained to well 
data, reduces the number of inversion parameters to 30. The initial guess for the local optimizers is computed 

as outlined in Section 3.3. We can see in Fig. 2 some of the inversion results (one layer) for the local opti-

mizer SNOPT starting from this initial guess and from the model average µ  (i.e., all the PCA coefficients 

equal to zero). In this case, because only the effect of taking different initial guesses is studied, no noise is 

added to the observables. For both types of seismic observables the initial guess proposed yields acc-eptable 

results (as can be noticed if the results in Fig. 2 are compared with those for the true model in Fig. 1). 

4.2. Inversion results and prediction 

The inversion problem in (1) is solved by the methodology described in this work. We have tested three local 

optimizers: the gradient based SNOPT, Generalized Pattern Search (GPS) and Hooke-Jeeves Direct Search 

(HJDS). All of them take as initial guess the one introduced in Section 3.3. We have also considered a genetic 

algorithm (GA). The distributed computing environment consists of a SPARC cluster with 48 nodes, and it is 

incorporated in SNOPT, GPS and GA. Each observable data presents noise, with amplitude 5 per cent the 

standard deviation of the corresponding observable. 

We show in Fig. 3 some of the inversion results for the same layer as in previous figures. These results are 

representative for all the layers in the model. We notice that the model inversion with diffraction tomography 

as observable appears to be closer to the true model *m  than with traveltime tomography. This is in accor-

dance with the fact that, unlike traveltime tomography, diffraction tomography takes into account both time 

and waveform data. 
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Figure 3. Layer 4 after model inversion with diffraction tomography by SNOPT (a) and GPS (b), and with traveltime 

tomography by HJDS (c) and GA (d). The genetic algorithm, because of its global nature, does not require initial guess.  

  

% diff. trav. 

SNOPT 88.7 81.4 

GPS 87.6 83.9 

HJDS 87.1 81.9 

GA 82.2 76.7  

      (a)      (b) (c) 

Figure 4. Performance results for the local optimizers (SNOPT, GPS and HJDS) in the model inversion with diffraction 

and traveltime tomography, (a) and (b), respectively. In both cases one complete observable simulation takes 43 seconds; 

thus, 250 equivalent simulations require approximately 3 hours of computing time. In the table in (c) we present the per-

centage of cells where the model is inverted correctly, both with diffraction (diff.) and traveltime (trav.) tomography. 

In Fig. 4 we illustrate the performance of the local optimizers used. In these plots the horizontal axis (number 
of equivalent simulations) is proportional to the total computing time. One equivalent simulation comprises 

the distributed computation of all observables, and in all cases here it takes around 43 seconds. The initial 

guess computation needs roughly 5 equivalent simulations. SNOPT yields efficiently a good solution. For 

this level of noise we have appreciated some minor deterioration in the performance of this gradient-based 

method. GPS and HJDS can be alternatives to SNOPT in noisier situations. We stress that HJDS may be a 

good option in absence of distributed computing resources. The use of genetic algorithms is recommended 

when the other strategies fail. The inversion results by GA, as seen in Fig. 3 (d), demonstrate clear discrepan-

cies with the true model. The performance of GA is slower
2
 and more gradual, as far as cost function reduc-

tion is concerned, than those in Fig. 4. 

Since the model m is a binary indicator, the model dissimilarity can be quantified by computing the percent-

age of cells where the indicator is determined correctly (something which is proportional to the zero-norm of 

the model error). We can check again in the table in Fig. 4 (c) that diffraction tomography yields solutions 

with less errors than traveltime tomography, and also that the quality of the model estimated by GA is not as 
good as those obtained by the other optimizers.  

In Fig 5 (a) we can see, for the solution obtained by SNOPT and with diffraction tomography as seismic ob-

servable, the oil production and water injection forecast for 360 days. When the prediction interval is ex-

tended we have observed an increasing mismatch in water production. We can recalibrate the previous solu-
tion by simply scaling the model (one parameter to adjust) and considering as observables oil and water pro-

duction, together with seismic data at the end of the new interval. In Fig. 5 (b) we show a prediction of oil 

and water production during 2000 days, based on a recalibration for the first 1000 days. We notice that the 

associated one-dimensional optimization step required approximately two additional equivalent simulations. 

5. CONCLUSIONS 

In this paper we have presented a robust, easy to use, and mathematically sound methodology for inverse 

modeling of oil reservoirs. A parameter reduction step combined with local optimizers within a distributed 

computing framework endows the scheme with efficiency. By means of a realistic case study we have dem-

onstrated the applicability of the procedure to oil reservoir modeling. Because the observables are seen as 

black boxes, the approach can be adapted for other inversion problems. 

                                                 
2 In the case of diffraction (traveltime) tomography, a cost function value of 0.006 (0.0031) is obtained after 207 (250) 

equivalent simulations. 
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     (a)   (b) 

Figure 5. (a) Oil production and water injection forecast (360 days) for the solution obtained by SNOPT and diffraction 

tomography. (b) Oil and water production forecast (2000 days) for the recalibrated (first 1000 days) solution. In both 

cases the results are compared with those obtained for the true model 
*m . 

ACKNOWLEDGMENTS 

The authors thank the Stanford Smart Fields Consortium, the Stanford Center for Reservoir Forecasting, the 

Stanford Center for Computational Earth and Environmental Science, E. Santos, O. Isebor, D. Michael, and 

the anonymous reviewer, for their help during this work.  

REFERENCES 

Aanonsen, S.I., Aavatsmark, I., Barkve, T., Cominelli, A., Gonard, R., Gosselin, O., Kolasinski, M. and 

Reme, H. (2003), Effect of Scale Dependent Data Correlations in an Integrated History Matching Loop 

Combining Production Data and 4D Seismic Data, Society of Petroleum Engineers (SPE) 79665. 
Aziz, K. and Settari, A. (1979), Petroleum Reservoir Simulation, Kluwer Academic Publishers. 

Cao, Y., Li, S., Petzold, L.R. and Serban, R. (2003), Adjoint Sensitivity Analysis for Differential-Algebraic 

Equations: The Adjoint DAE System and its Numerical Solution, SIAM J. Sci. Comp., 24(3), 1076–1089. 

Castro, S.A. (2007), A probabilistic approach to jointly integrate 3D/4D seismic, production data and geo-

logical information for building reservoir models, Appendix: Stanford VI reservoir, Ph.D. Thesis, Stanford 

University. 

Conn, A.R., Scheinberg, K. and Vicente, L.N (2009), Introduction to Derivative-Free Optimization, MPS-

SIAM Series on Optimization. 

Evensen, G. (2003), The Ensemble Kalman Filter: theoretical formulation and practical implementation, 

Ocean Dynamics, 53, 343–367. 

Gill, P.E., Murray, W. and Saunders, M.A. (2005), SNOPT: An SQP Algorithm for Large-Scale Constrained 

Optimization, SIAM Review, 47(1), 99–131. 

Goldberg, D.E. (1989), Genetic algorithms in search, optimization and machine learning, Addison-Wesley. 

Hooke, R. and Jeeves, T.A. (1961), “Direct Search” Solution of  Numerical and Statistical Problems, Journal 

of the ACM, 8, 212–229. 

Huang, X., Meister, L. and Workman R. (1997), Reservoir Characterization by Integration of Time-Lapse 

Seismic and Production Data, Society of Petroleum Engineers (SPE) 38695. 
Kolda, T.G., Lewis, R.M. and Torczon, V. (2003), Optimization by Direct Search: New Perspectives on 

Some Classical and Modern Methods, SIAM Review, 45(3), 385–482. 

Maschio, C., Campane Vidal, A., and Schiozer, D.J. (2008), A framework to integrate history matching and 

geostatistical modeling using genetic algorithm and direct search methods, Journal of Petroleum Science 

and Engineering, 63, 34–42. 

Mavko, G., Mukerji, T. and Dvorkin, J. (1998), The Rock Physics Handbook, Cambridge University Press. 

Miranda, A.A., Le Borgne, Y.A. and Bontempi, G. (2008), New Routes from Minimal Approximation Error 

to Principal Components, Neural Processing Letters, 27(3), 197–207. 

Nocedal, J. and Wright, S.J. (2000), Numerical Optimization, Springer.  

Sarma, P., Durlofsky, L.J., Aziz, K. and Chen, W.H. (2006), Efficient real-time reservoir management using 

adjoint-based optimal control and model updating, Computational Geosciences, 10, 3–36. 

Stewart, R.R. (1991), Exploration Seismic Tomography: Fundamentals, SEG, Tulsa, OK. 

Strebelle, S. (2002), Conditional simulation of complex geological structures using multi-point statistics, 

Mathematical Geology, 34, 1–21. 

4212




