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Abstract: Species distribution models (SDMs) are empirical models relating species occurrence to 
environmental variables based on statistical or other response surfaces. Species distribution modeling can be 
used as a tool to solve many theoretical and applied ecological and environmental problems, which include 
testing biogeographical, ecological and evolutionary hypotheses, assessing species invasion and climate 
change impact, and supporting conservation planning and reserve selection. The utility of SDM in real world 
applications requires the knowledge of the model’s accuracy. The accuracy of a model includes two aspects: 
discrimination capacity and reliability. The former is the power of the model to differentiate presences from 
absences; and the latter refers to the capability of the predicted probabilities to reflect the observed proportion 
of sites occupied by the subject species.  

Similar methodology has been used for model accuracy assessment in different fields, including medical 
diagnostic test, weather forecasting and machine learning, etc. Some accuracy measures are used in all fields, 
e.g. the overall accuracy and the area under the receiver operating characteristic curve; while the use of other 
measures is largely restricted to specific fields, e.g. F-measure is mainly used in machine learning field, or is 
referred to by different names in different fields, e.g. “true skill statistic” is used in atmospheric science and it 
is called “Youden’s J” in medical diagnostic field. In this paper we review those accuracy measures typically 
used in ecology. Generally, the measures can be divided into two groups: threshold-dependent and threshold-
independent. Measures in the first group are used for binary predictions, and those in the second group are 
used for continuous predictions. Continuous predictions may be transformed to binary ones if a specific 
threshold is employed. In such cases, the threshold-dependent accuracy measures can also be used.  

The threshold-dependent indices used in or introduced to SDM field include overall accuracy, sensitivity, 
specificity, positive predictive value, negative predictive value, odds ratio, true skill statistic, F-measure, 
Cohen’s kappa, and normalized mutual information (NMI). However, since NMI only measures the 
agreement between two patterns, it cannot differentiate the worse-than-random models from the better-than-
random models, which reduces its utility as an accuracy measure. 

The threshold-independent indices used in or introduced to the SDM field include the area under the receiver 
operating characteristic curve (AUC), Gini index, and point biserial correlation coefficient. The proportion of 

explained deviance 2D  and its adjusted form have been also introduced into SDM field. But this adjusted 
metric has no theoretical foundation in the context of generalized linear modeling. Therefore, we provide 

another adjusted form, which was proposed by H. V. Houwelingen based on the asymptotic 2χ  distribution 

of the log-likelihood statistics. Its superiority over other related measures has been found through previous 

simulation studies. We also provide another analogous measure, the coefficient of determination 2R , which 
has had a long history in weather forecast verification and was also recommended for use in medical 

diagnosis. Though these measures 2D  and 2R  are routinely used to evaluate generalized linear models 
(GLMs), we argue that nothing prevents them from being applied to other GLM-like models.  

In SDM accuracy assessment, discrimination capacity is often considered, but model reliability is frequently 
ignored. The primary reason for this is that no reliability measure has been introduced into the ecological 
literature. To meet this need we also suggest that root mean square error be used as a reliability measure. Its 
squared form, mean square error, has been used in meteorology for a long time, and is called Brier’s score. 
We also discuss the effect of prevalence dependence of accuracy measures and the precision of accuracy 
estimates.  
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1. INTRODUCTION 

Species distribution models (SDMs) are used to predict the geographic range of a species from its occurrence 
and relevant environmental data. Species distribution modeling is essentially a binary classification problem 
with two training classes, presence and absence. Two types of model output are common: binary results 
where sites are classified as either part of the distribution of the species or outside their distribution; and 
continuous results where sites are given a ‘probability’ of being part of a species’ distribution. It has become 
a useful tool for fundamental ecological and biogeographical research, and for biodiversity management and 
conservation (Guisan and Zimmermann, 2000). Model utility is dependant on an evaluation of performance. 
This is a critical element of model-building. Robust assessment of model performance identifies the relative 
strengths and weaknesses of models and delimits the range of uses to which they can be usefully applied.  

There are two facets to measuring the accuracy of species distribution models: discrimination capacity and 
reliability (Pearce and Ferrier, 2000) though the former is generally viewed as more important than the latter 
(Ash and Shwartz, 1999). Discrimination capacity measures a model’s ability to distinguish between sites 
where the subject species has been detected (presence sites) and those sites where the species is known to be 
absent (absence sites). Reliability describes the agreement between predicted probabilities of occurrence and 
the observed proportions of sites occupied by the subject species (Pearce and Ferrier, 2000). Reliability is an 
essential attribute of the quality of probabilistic predictive models. Both aspects of model performance 
(discrimination capacity and reliability) can be assessed when the modeling result is continuous. When the 
modeling result is binary, only discrimination capacity can be assessed. A range of indices are used to 
evaluate either discrimination capacity and/or reliability. A number of these can only be applied to binary 
results or to continuous results that have been transformed into a binary solution by using a specific cut-off 
value, called a threshold. These indices are called threshold-dependent indices. Indices that can be applied 
directly to continuous situations are called threshold-independent indices. If the threshold value is changed 
systematically, the optimal value of any threshold-dependent indices can be obtained. Since this process is 
not dependent on a specific threshold value, these 
types of optimal values can also be treated in the 
same manner as threshold-independent ones. All 
threshold-dependent indices are based on some or 
all of the elements of the confusion table (Table 
1).  

Fielding and Bell (1997) reviewed some accuracy 
measures that can potentially be used in SDM. 
Couto (2003) reviewed some accuracy measures 
in the context of general spatial simulation 
models. This paper aims to comprehensively 
review the accuracy measures used in SDM, and 
provide additional measures, especially with 
regard to calibration measures which are still 
largely ignored in SDM field. We also draw 
attention to some outstanding issues relevant to 
the measurement of accuracy that require further 
attention.  

Table 1. Confusion table with sample parameters, 
where n is the total number of sites, n+j is the 
number of sites predicted as class j (j=0, 1), ni+ is 
the number of sites observed as class i (i=0, 1), nij 
is the number of sites observed as class i and 
predicted as class j, and class 0 is absence and 
class 1 is presence. 

                          Predicted 

       Presence Absence       Total 

Observed  
Presence             n11      n01         n+1 
Absence             n10      n00         n+0 

Total             n1+      n0+         n 
 

2. THRESHOLD-DEPENDENT INDICES 

The threshold-dependent accuracy measures are shown in Table 2. Sensitivity (Se) and specificity (Sp) are 
widely used in many disciplines including SDM. Se and Sp are conditional probabilities. The former is the 
probability that the model correctly predicts an observation of a species at a site and the latter is the 
probability that a known absence site is correctly predicted. While Se and Sp are probabilities conditional on 
the observed pattern, positive predictive value (PPV, also called positive predictive power) and negative 
predictive value (NPV, also called negative predictive power) are their counterparts that are conditional on 
the predicted pattern. PPV is the probability that a site predicted as present is actually present and NPV is the 
probability that a site predicted as absent is actually absent. Although these two indices are widely used in 
medical diagnostic tests, they are rarely applied to SDM. In the field of image classification, Se and Sp are 
referred to as producer’s accuracy, and PPV and NPV are called user’s accuracy (Liu et al., 2007). In the 
fields of machine learning and information retrieval, precision and recall (Fawcett, 2006) are used instead of 
PPV and Se. These measures have been used in SDM (e.g. Drake et al., 2006). The pair Se and Sp and the 
pair PPV and NPV are complementary to each other (Hand, 2001).  
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Single global measures of model performance are generally preferred by researchers. Overall accuracy (OA) 
is the most common one used in various disciplines including ecology (e.g. Fielding and Bell, 1997), which 
is the probability that a site (either presence or absence) is correctly predicted. Its application can be traced 
back to Finley (1884) who employed this measure for assessing the accuracy of forecasting tornado activity. 

Cohen’s (1960) kappa is another widely used measure in various disciplines including SDM. It has been 
adopted to overcome the problem of overestimating accuracy with OA. It measures the extent to which the 
agreement between observed and predicted is higher than that expected by chance alone. This measure was 
originally formulated by Doolittle (1888) and later was rediscovered and extended by Heidke in 1926. It is 
commonly used in meteorology where it is known as Heidke’s skill score (Stephenson, 2000). The chance 
adjustment for sensitivity and specificity have also been devised (Coughlin and Pickle, 1992), however the 
definition of ‘chance’ is open to interpretation (Hand, 2001). 

Odds ratio (OR) is a familiar measure in the epidemiologic field (Glas et al., 2003), which is defined as the 
ratio of the odds of positivity in the presences relative to the odds of positivity in the absences, or the ratio of 
the odds of positivity in predicted presences relative to the odds of positivity in predicted absences. This 
index has also been introduced to SDM (Fielding and Bell, 1997), and has been used in a few studies (e.g. 
Manel et al., 2001). OR is unbounded and is undefined when either false positives or false negatives are zero, 
which is not an unusual situation, especially for models with high accuracy. In this case, adding 0.5 to each 
of the four cells of Table 1 is a common practice to calculate an approximation of the OR (Glas et al., 2003). 
This measure is closely related to Yule’s Y, and Yule’s Q, which has also been termed the Gamma 
coefficient (Kraemer, 2006) and odds ratio skill score (Stephenson, 2000).  

F-measure, which is the weighted harmonic mean of precision and recall (Daskalaki et al., 2006), is widely 
used in the machine learning field, especially when the parameter 1=β  (Fawcett, 2006). This measure has 

been used in SDM (e.g. Drake et al., 2006). Prescribed in this way the F-measure will be undefined when all 
sites are predicted as one category (either presence or absence), as Drake et al. (2006) encountered. This can 
be resolved by some simple algebraic manipulation. The resultant formula is presented in Table 2. 

Table 2. Threshold-dependent accuracy measures. See Table 1 for the explanation of the basic parameters. 

Index   Definition     Reference 

Overall accuracy  nnnOA /)( 0011 +=     Finley (1884) 

Sensitivity (recall) += 111 / nnSe      Fielding and Bell (1997) 

Specificity  += 000 / nnSp      Fielding and Bell (1997) 

Positive predictive value  111 / += nnPPV     Fielding and Bell (1997) 

Negative predictive value += 000 / nnNPV     Fielding and Bell (1997) 

True skill statistic  1−+= SpSeTSS     Peirce (1884) 

F measure  ( )PPVSeF 1)1( 22 ++= ββ   Daskalaki et al. (2006) 

       )()1( 11
2

11
2

++ ++= nnn ββ     

Odds ratio  01100011 / nnnnOR =     Glas et al. (2003) 

Yule’s Y  )1/()1( +−= ORORY    Karemer (2006) 

Yule’s Q  )1/()1( +−= ORORQ    Karemer (2006) 

Kappa   ( ) )1( EAEAOAKp −−=    Cohen (1960) 

   where 2
0011 /)( nnnnnEA ++++ +=  

Normalized mutual opoo HHHNMI /)( |−=    Finn (1993) 

information   where nnnnnnnH o /)logloglog( 0011 ++++ −−=  

nnnnnnnH
i j

ijijpo /]logloglog(
1

0

1

0
0011| 

= =
++++ −+=  
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Stimulated by Gilbert’s (1884) remarks on the accuracy of Finley’s (1884) tornado forecasts, Peirce (1884) 
proposed a “measure of the science of the method”, which is the difference between true positive rate and 
false negative rate. It has also been “rediscovered” and reworked more recently (Stephenson 2000). The first 
index to be derived from Pierce’s line of reasoning is “Hanssen-Kuipers discriminant” or “Kuipers’ 
performance index” (Hanssen and Kuipers, 1965).  

The difference is that the adjustment for chance in Kuiper’s index is based on historical climatological 
relative frequencies, whereas that in Pierce’s measure is based on sample relative frequencies (Murphy, 
1996). The second index is the “true skill statistic” (TSS) (Flueck, 1987). Some people also referred to it as 
“Pierce skill score” in reference to its original discovery (Stephenson, 2000). It has been introduced to SDM 
by Allouche et al. (2006). 

TSS is equivalent to Youden’s index J, which was developed by Youden (1951) and is widely used in 
medical diagnostic tests. It is defined as the average of the net prediction success rate for present sites and 
that for absent sites. It has gained considerable theoretical interest over many years (Böhning et al., 2008), 
and it is the best available summary measure of model performance in medical diagnostic tests (Biggerstaff, 
2000). This index is closely related to the arithmetic mean of sensitivity and specificity (see Table 2). 

The normalized mutual information (NMI) was introduced to ecology by Fielding and Bell (1997), and used 
in SDM by Manel et al. (2001). NMI is undefined whenever there is zero in any cell of the confusion matrix. 

However, this problem can easily be solved if we take xx
x

lnlim
0→

, which resolves to 0 (Finn, 1993), instead 

of calculating 0ln0  directly which is undefined. However, as Liu et al. (2007) discussed, NMI has some 
weaknesses. It only measures the agreement between two patterns; it cannot differentiate the worse-than-
random models from the better-than-random models, and as a result is not a useful accuracy measure.  

3. THRESHOLD-INDEPENDENT INDICES 

The threshold-independent accuracy measures are shown in Table 3. Area under the curve (AUC) of receiver 
operating characteristic is one of the most widely used accuracy measures in various disciplines including 
ecology though it has received some criticism (Lobo et al., 2008). In the context of SDM, the AUC of a 
model is equivalent to the probability that the model will rank a randomly chosen species presence site higher 
than a randomly chosen absence site (Pearce and Ferrier, 2000). This is equivalent to the Wilcoxon test of 
ranks (Hanley and McNeil, 1982). The AUC is also closely related to the Gini coefficient (Breiman et al., 
1984), which is twice the area between the diagonal and the ROC curve. It is a correlation coefficient rather 
than AUC (Hand and Till, 2001; Kraemer, 2006). The Gini coefficient was used in SDM by Engler et al. 
(2004). AUC has been criticized by some researchers as it can give a misleading picture of model 
performance since it covers parts of the prediction range that is of no practical use (e.g. Briggs and Zaretzki, 
2008). Therefore, partial AUC (i.e. PAUC) was proposed (McClish, 1989), which is the average sensitivity 
over a fixed range of the false positive rate. The choice of such “regions” has to be made on a case-by-case 
basis, and the PAUC does not possess a probabilistic interpretation (Lee and Hsiao, 1996). 

The maximum overall accuracy and maximum kappa are frequently used in SDM in a threshold-independent 
way to indicate a model’s predictive capacity (e.g. Guisan et al., 1998; Liu et al., 2005). Point biserial 

correlation coefficient ( pbr ) is also used in SDM (e.g. Elith et al., 2006). It is the Pearson product moment 

correlation coefficient calculated under the condition that one variable (i.e. the observed species occurrence) 
is binary and the other (i.e. the predicted probability) is ordinal (Karemer, 2006). Guisan and Zimmermann 

(2000) introduced the proportion of explained deviance ( 2D ) and its adjusted form into ecology to assess the 
performance of generalized linear models, and the latter was used in subsequent studies (e.g. Engler et al., 

2004). The coefficient of determination 2R  was also suggested for generalized regression model assessment 
(Ash and Shwartz, 1999). Mean absolute prediction error (MAPE) (Schemper 2003) and mean cross entropy 
(MXE) (Caruana and Niculescu-Mizil 2004) have also been used as accuracy measures, but not been used in 
SDM. 

4. DISCUSSION AND CONCLUSION 

Through this review of the use of accuracy indices in SDM, the following issues have been identified: 
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Table 3. Threshold-independent accuracy measures. See Table 1 for the explanation of the basic parameters. 

Index   Definition    Reference 

Maximum overall  )max(OAMXOA =    Liu et al. (2005) 

accuracy 
Maximum kappa  )max(KpMXKp =    Guisan et al (1998) 
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   ip0  and jp1  are the predicted value  

for the absence site i and presence site j. 

1n  and 0n  are the number of present and  

absent sites respectively. 
Gini index  12 −= AUCGini    Hand and Till (2001) 
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coefficient  where, io  is the observed value for site i  

(1 for presence, 0 for absence), ip  is the  

predicted value for site i.  

Proportion of  ( ) ( )0
2 ˆlogˆlog1 ββ LLD −=   Mittlböck and Schemper (1996) 
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(1) Almost all SDM studies only consider the discrimination capacity, reliability is rarely evaluated. There 
are some useful indices that measure model reliability, e.g. Brier’s score (i.e. mean square error) or its square 
root (i.e. root mean square error), which have been used in other fields including meteorology (e.g. Brier 
1950) and machine learning (e.g. Caruana and Niculescu-Mizil, 2004). We recommend these measures also 
be included in SDM accuracy assessment. 

 (2) The precision of the estimated accuracy is also important information for model accuracy assessment. 
Though statistical properties for many measures are known (see Couto 2003, Obuchowski 2005, Allouche et 
al. 2006, and the other references cited) and can be used to calculate the variance or standard deviation or 
confidence interval for the calculated accuracy, such reporting is unusual in modeling species distributions. 
We recommend that this information be given for each accuracy measure used. If the theoretical statistical 
characteristics are not known for the measures used, resampling methods (e.g. bootstrap) can be used to 
calculate the variance and confidence interval for the estimated accuracy. 

(3) The sample size for the test data needed to obtain a reliable estimate of model performance also needs to 
be considered, as this is closely related to the statistical properties of accuracy measures. Small-sized test 
datasets may lead to unstable accuracy measurements, which may result in misleading conclusions on model 
accuracy. 

(4) The prevalence dependence of accuracy measures also requires further attention. Existing studies have 
lead to inconsistent conclusions. The main reason for this is that the design of these studies does not 
differentiate between the effect of model-building data prevalence and the effect of test data prevalence per 
se.  
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