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Abstract: In the ecological field, expert opinion has been acknowledged as providing valuable 
information in modelling, particularly when the observed data are limited or unreliable. Indeed international 
recommendations are that expert-driven models are to be preferred to statistical models for habitat modelling 
(Langhammer et al., 2007). However expert-driven models are not calibrated to empirical data and therefore 
rely entirely on the credibility and expertise of the experts. Bayesian statistical modelling provides a useful 
bridge between purely expert-driven models and data-driven statistical models. Several methods are available 
for eliciting expert knowledge into Bayesian statistical models in a variety of contexts, in general (O’Hagan 
et al., 2006) and in ecology (Low Choy et al., 2009). For example logistic regression (LR) is a common 
choice for modelling the probability of presence or absence for a species and how this relates to a number of 
habitat covariates, e.g. vegetation, geology, topography and climate (Guisan and Zimmermann 2000).  

Recently the authors compared three elicitation methods for Bayesian regression in the context of habitat 
modelling (O’Leary et al., 2008a). These included a questionnaire-based method (similar to Kuhnert et al., 
2005; Martin et al., 2005), which simply asks experts whether each covariate xj increases, decreases or has 
essentially no effect on the response y. Alternatively using a software tool (Kynn 2005), experts could also be 
asked to draw a species response curve showing how the probability of presence (on the y-axis) changed with 
a particular habitat covariate such as geology type (on the x-axis), with all other covariates held at their 
optimum. Finally an elicitation tool embedded within a GIS (Denham and Mengersen 2007) could be used to 
help experts select sites on a map, inspect the habitat characteristics at and surrounding each site, and then 
assess the probability of presence at each site. These three approaches were compared for habitat suitability 
modelling of the threatened Australian brush-tailed rock-wallaby Petrogale penicillata (O’Leary et al., 
2008a). This comparison found substantial differences in the three elicitation approaches in how the expert 
knowledge translated into the Bayesian statistical model.  

In this paper we extend this comparison to consider a method, newly developed by the authors (O’Leary et 
al., 2008b), for elicitation of expert opinion into Bayesian classification trees. Logistic regression and 
classification trees are obvious contenders for modelling the relationship between a binary response (e.g. 
presence/absence) and several covariates. Indeed classification trees are another statistical modelling 
approach often applied in the habitat modelling context (Murray et al., 2008), popular since they provide an 
easily understood graphical representation of a decision tree. Until recently, however, no method was 
available for incorporating expert knowledge into classification trees. Using the new approach, elicitation 
questions focus on the size of the tree representing the number of decisions; the relative importance of the 
covariates; and the splitting rules for the most important covariates which quantify how decisions relate to 
variables (O’Leary et al., 2008b).  

Hence this paper compares four elicitation approaches for modelling the habitat suitability of the rock-
wallaby, using the same dataset: three Bayesian logistic regression methods and one Bayesian classification 
tree method. We found that there were some dissimilarities between the expert informed priors formulated 
using the different methods, but all approaches identified that northern aspects have the highest probability of 
presence.  This paper demonstrates that combining expert informed priors with limited observed data using 
one or more of the elicitation approaches may improve scientific understanding and therefore contribute to 
conservation management planning. 

Keywords: Bayesian classification and regression trees; Bayesian logistic regression; expert elicitation; 
informative priors. 
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1. INTRODUCTION 

An important phase in informative Bayesian analysis is the elicitation of expert information and its 
representation as prior distributions. Expert elicitation is a formal approach of acquiring experts’ prior beliefs 
about possible values of parameters in terms of probability, as comprehensively reviewed in general by 
O’Hagan et al. (2006) and in the psychological literature by Kynn (2008). An expert has been defined as 
someone who has knowledge of the subject of interest (e.g. Garthwaite et al., 2005) and gained through at 
least ten years’ education, training and experience in the field (Chi et al., 1988). There are many types of 
experts. In habitat modelling Denham and Mengersen (2007) identify field-based experts who prefer 
assessing probabilities at specific sites, and theoretical experts who prefer assessing trends across sites. 
 

Bayesian statistical modelling is valuable in research areas such as ecology, particularly useful when the data 
are limited in sample size or representativeness (Low Choy et al. 2009).  For generalized linear models 
(GLMs), there are elicitation methods available for: zero inflated Poisson regression (Kuhnert et al., 2005; 
Martin et al., 2005), normal linear models (Kadane et al, 1980), and logistic regression (e.g. Denham and  
Mengersen, 2007). O’Leary et al. (2008a) compared three elicitation approaches for Bayesian logistic 
regression (Denham and Mengersen, 2007; Kynn, 2005; O’Leary 2008).  However, to date, only one 
elicitation approach has been suggested for Bayesian classification trees (O’Leary et al., 2008b).  
 

In this paper we extend the comparison in O’Leary et al. (2008a) to include the expert elicitation approach 
for Bayesian classification trees (O’Leary et al., 2008b).  These four elicitation methods were trialled on one 
expert in order to model the habitat suitability of the threatened Australian brush-tailed rock-wallaby 
(Petrogale penicillata).  

2. CASE STUDY 

The Australian brush-tailed rock-wallaby (Petrogale penicillata) is listed as threatened in Queensland, 
endangered in New South Wales, critically endangered in Victoria and extinct in the Australian Capital 
Territory. Greater understanding of its habitat requirements is necessary for better management and 
conservation of this species. The study area was located in Southeast Queensland, along the Great Dividing 
Range. We focus on the dataset used as the basis for the previous comparison (O’Leary et al., 2008a), which 
contains 50 sites, with the species present at 41 sites. These data form a subset of a larger dataset of 200 sites, 
with survey design and protocol detailed in Murray et al. (2008). There are 11 habitat variables; the 
categorical variables are geology, habitat complexity, aspect (north, northwest, northeast and west versus 
other) and forest type; and continuous variables are height, elevation, slope and length. As is common in 
expert assessment of rare species (e.g. Denham and Mengersen 2007), only one knowledgeable expert was 
available. The expert we questioned is acknowledged as the best expert on this species, whilst other experts 
only have partial or historical knowledge. This expert had recent, local knowledge of the species, GIS 
experience and some statistical knowledge.  

3. BAYESIAN STATISTICAL MODELS 

3.1. Bayesian logistic regression (LR) 

The habitat suitability of the rock wallaby can be modelled using logistic regression (LR) with over-
dispersion. The observed data are modelled as ( )ii py  Bernoulli~ , where 

iy  is the observed presence (1) or 

absence (0) of the species at site ni ,,1=  and 
ip is the probability of presence at site i.  Then 

( ) iiJJi
i

i
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p
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loglogit , where 
0β  is the intercept; 

jβ  are the coefficients j=1,…,J 

associated with each environmental habitat variables 
iJi xx ,,1  ; and ( )2,0N~ σε i

 allows for extra binomial 

variation across sites.  Independent multivariate normal (MVN) priors can be placed on the regression 
coefficients ( ) ( )1

~ MVN , ,  diag , ,
jj j β ββ μ σ σΣ Σ =   if no information about a coefficient is available or 

non-informative priors are desired. If, however, expert opinion is available about the coefficients, either 

directly or indirectly, this can be used to refine the values of hyperparameters jμ and Σ . 
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3.2. Bayesian Classification Trees (CT) 

3.3. Notation 

We explain the mathematical notation for trees by 
referring to the tree in Figure 1. The root node (k=1) 
is at the top, and the tree progressively branches to 
reach the K=5 terminal nodes found at the ends of the 
branches on the tree. This tree shows 4 variables of 
the 11 (J=11) fit in the model. 

Consider the first branch at node S1=1. The variable 
forest defines the first split V1. The splitting rule R1 
splits the data into a left and right branch, 
respectively

1 1Closed/Dry forest or  i iy R y R∈ = ∉ . At 

the left-most branch, we have a terminal node with 
estimated probability of presence p1 = 8/(8+0) = 1.0. 

3.4. Model 

Bayesian approaches to inference for classification 
and regression trees (BCART) were proposed by 
Chipman et al. (1998), Denison et al. (1998) and 

Buntine (1992).  The joint distribution is ( ) ( ) ( ) ( )kkk KypKpKpyKp θθθ ,||,, = , where K is the tree size 

(number of terminal nodes), the parameter set { }, ,k k k kR S Vθ =  depends on K, y is binary response variable 

taking values {0,1} with likelihood ( )| , kp y K θ . For classification trees (CT), observations are assumed to 

have a multinominal distribution, so the likelihood is ( ) ( ) .,|
1 1

∏∏
= =

∝
K

k

N

l

m
klk

klpKyp θ . Here mkl is the number of 

data points at terminal node k, which are classified into category l, and pkl is the corresponding probability.   

A conjugate Dirichlet prior can be adopted for pkl. In the absence of other information, a uniform distribution 
can be used to define a non-informative prior so that ( ) ( ).1,1|,,Dir,, 11-L1  kLkkJk pppp =π  The full prior for 

the model is ( ) ( ) ( ) ( ) ( ) ( ).,,|,||| KpKSVRpKSVpKSpKpKp kkkkkkk =θ  Dirichlet priors may be allocated to 

several elements of the prior: selecting possible splitting nodes via ( ) ( )
kSSkk SKSp αα ,|Dir|,

1
= ; specifying 

important variables Vk that determine the split at node Sk via ( ) ( )
kVVkkk VKSVp αα ,|Dir,|

1
= ; defining splitting 

rules Rk for variable Vk at node Sk via ( ) ( ).,|Dir,,|
1 kRRkkkk RKSVRp αα = A straightforward choice of prior 

p(K) is a truncated Poisson with parameter λ: ( ) .
( 1) !

k

p K
e kλ

λ=
−

 This prior imposes a left limit of k ≥ 1 

because the minimum model contains one terminal node. A previous computational approach for BCART 
adopted a stochastic search algorithm to efficiently explore part of the parameter space (Chipman et al. 
1998). We apply the algorithm of O’Leary (2008b). This simulates the joint posterior distribution using 
reversible jump Markov chain Monte Carlo (Denison et al. 1998), considering four main transitions for tree 
structure θk: changing the splitting variable Vk or the splitting rule Rk at some node k, or adding or deleting a 
terminal node Sk. The stopping criterion and identification of good trees applied by O’Leary (2008b) is 
achieved through several accuracy measures (Fielding and Bell, 1997): the overall misclassification rate 
(MCR), the misclassification of presences or false negative rate (FNR) and the misclassification of absences 
or false positive rate (FPR).  

4. EXPERT ELICITATION APPROACHES 

4.1. Elicitation for logistic regressions. 

Method A: The approach of Denham and Mengersen (2007) is an indirect method of elicitation (Spetzler and 
Staël von Holstein, 1975) that was designed for environmental modelling. This method takes advantage of 
the geographic nature of these problems by embedding the elicitation in a Geographic Information System 
(GIS), or map-based software. The expert is asked to predict the response at several sites, one at a time, each 
with known covariate values. This interactive map-based tool is used to elicit site-based predictions from a 
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Figure 1. The best tree acquired using non-

informed priors for BCART method. 
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single expert for a LR model (although the approach can be extended to all generalised linear models 
(GLM)). To aid the expert during the elicitation, 
statistical and graphical feedback was automated 
by the software.  

Method B: Kynn (2005) developed an interactive 
indirect graphical tool called ELICITOR, which is 
now an add-in to WinBUGS (www.winbugs-
development.org.uk). By asking experts to graph 
the univariate relationship between the response 
and one covariate (with all others held constant), 
it elicits species response curve predictions from a 
single expert for the LR model, and more recently 
for all GLM models. This method was inspired by 
Bedrick et al. (1996) and Garthwaite (1998). 

Method C: Martin et al. (2005) proposed a direct 
approach for eliciting opinion, using 
questionnaires, from multiple experts on a single 
covariate for zero inflated Poisson regression. 
O’Leary (2008) adapted this approach to single or 
multiple experts and multiple covariates in the LR 
context and extended the questionnaire to include 
elicitation of measures of confidence.  Experts are 
simply asked whether each covariate increases, 
decreases or has no effect on the response. This 
simple elicitation method does not require experts 
to know about probabilities or distributions.  

4.2. Elicitation for classification trees (CT) 

Method D: O’Leary et al. (2008) developed an 
elicitation approached for CT for a single expert. 
The expert is questioned about the size of tree, 
relative importance of covariates, and splitting rules of most important variables. O’Leary et al. (2008b) 
discussed three elicitation approaches, however in this paper we will only detail the methodology and results 
of one method: numeric weights. This method involves the expert attaching a numeric weight to each item. 
We provided a sense of scale by encouraging (but not insisting on) weights between 0 and 100, and we scaled 
the final weights to sum to 100.  

For the size of the tree K (number of terminal nodes), we elicited the “preferred tree size” and as a baseline, 
the “largest possible tree size” (minimum and maximum number of terminal nodes), thus relying on the 
expert’s ability to interpret a CT model. The expert was asked to order the tree sizes, between this minimum 
and maximum, according to whether they were considered the least to most preferred. Then for each tree size 
the expert provided a numeric weight. The value of λ in p(K) prior was chosen to reflect these preferences. 

 
For the variable prior ( )KSVp kk ,| , elicitation entailed 

asking the expert to “identify the most important 
variables for predicting the presence of rock-
wallaby”. The expert was asked to weight the 
importance of each variable. Then the expert’s 
weights were expressed as probabilities defining 

kVα in the Dirichlet prior ( )KSVp kk ,| . 

 
For the splitting rule prior ( )KSVRp kkk ,,| , the expert 

was questioned about the splitting rules for each of 
the most important variables identified above. For 
simplicity we only asked about the splitting rule of a 

 

Figure 2. Prior (dashed line) & posterior (solid 
line) plots of aspect parameter in model, in which 
expert informed priors are black lines and weakly 
informative priors grey.  Expert informed priors 
were obtained from method A (top plot), method B 
(middle) and method C (bottom) for logistic 
regression model. 
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Figure 3. The best tree acquired using expert 
informed priors for BCART method. 
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particular variable for the topmost node of the tree (the first splitting node). For categorical variables, the 
expert estimated the probability of presence at each level. For continuous variables, we elicited the optimum, 
lower and upper quartile for which the expert expected to observe rock-wallabies. For each variable, these 
elicited probabilities define the 

kRα in the Dirichlet prior ( )KSVRp kkk ,,| .  

When no information was available, non-informative uniform priors were used: ( ) ( )1,,1|,| kkk VDirKSVp = , 

( ) ( )1,,1|,,| kkkk RDirKSVRp =  and ( ) ( )1,,1|| kk SDirKSp = . For assessing sensitivity to priors, a weakly 

informative prior for tree size set λ=10 in p(K), following Denison et al. (1998). 

5. COMPARISON OF FOUR ELICITATION APPROACHES 

Although the four elicitation methods have a common purpose, there are substantive differences as 
summarised in Table 1. The main benefits of the elicitation approach for CT compared to LR is that Method 
D (for CT) is the only method which encodes variable selection. However, LR elicitation methods could 
utilize elicited information on important variables to encode variable selection by adding additional hierarchy 
to the model. Method D relies on some understanding of the CT model (size of tree and splitting variables) 
whereas Methods A and C do not require understanding of LR. Different information is elicited when asking 
the expert about the effects of covariates on the response.  For LR, the response increases or decreases 
smoothly with changes in covariates, whereas in CT the response changes in “jumps” for each subset 
(sequence of rules) of covariate space. 

Table 1.  Advantages and disadvantages of four elicitation methods. 
 Method A Method B Method C Method D 
ADVANTAGES     
1. Accomplished remotely    
2. Elicitation method repeatable    
3. Flexibility of model structure    
4. Easily handles multiple experts     
5. Important variables are identified by experts    
6. Quick and simple    
7. Model feedback during elicitation     
8. Do not need to understand statistical model    
9. Takes advantages of spatial nature of data     
10. Exploits quantifiable ecological knowledge     
11. Incorporates  model-based variable selection    
12. Identifies high-order interactions which is 
useful for ecological data 

   

DISADVANTAGES     
13. Knowledge of basic probability theory     
14. Limited to landscape scale variables     
15. Complex elicitation software required     
16. Some level of model understanding required    

6. RESULTS 

Here, for the three LR methods (A, B and C) the variable aspect is used to illustrate and compare the prior 
and posterior distributions. Refer to Section 3.1 of O’Leary et al. (2008a) for details on results from 
comparing the three LR elicitation methods for aspect and slope, using a different dataset.  

 

For the CT (method D), the numeric weights stated by the expert were: for tree size 2 to 6, weights were 5, 
30, 30, 20, 15; for importance of variables weights were habitat complexity=70,  geology=10, height=5, 
slope=5, north=3, northwest=3, northeast=1, west=1, forest type=2, elevation=1, and length=1. The splitting 
rules for habitat complexity and geology were also elicited (see O’Leary et al., 2008b), however here only 
non-informative priors for splitting rules ( )KSVRp kkk ,,|  were used.  

 

Figure 2 displays, for methods A to C (LR methods), the non-informative priors, the expert informed priors 
and the posterior distributions of aspect generated from each of these priors. The prior and posterior 
distributions for all 3 LR methods have been standardised so that all distributions are on the same scale.  
Each LR method elicited different characteristics of the aspect coefficient, making comparison difficult.  
 

The prior distributions acquired using either LR methods (methods A to C; Figure 2) and CT (method D; 
elicitation results above) reflect the belief that the probability of presence is higher at sites with northerly 
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aspects. The posterior distributions under non-informative or expert defined priors using LR (methods A to 
C) are displayed in Figure 2. The posterior distributions from priors obtained from methods A and C are 
similar to those with non-informative priors using the LR model, indicating that the opinion of the expert 
concurs with the data for methods A and C. 
 
 

The tree with the lowest false negative rate (FNR) obtained under non-informative and expert informed 
priors are depicted in Figures 1 and 3 respectively. When expert informed priors were combined with data 
using method D (CT) this identified a tree (Figure 3) with a FNR of 0.15, false positive rate (FPR) of 0.11, 
posterior probability of -14.26 and deviance of 25.63. The non-informative priors obtained slightly lower 
FNR of 0.12, and the same FPR, posterior probability and deviance (Figure 1). The posterior trees from non-
informative and expert informed priors both included northern aspect and height variables. Applying expert 
informed priors resulted in identifying a tree more comparable to the expert’s opinion than when non-
informative priors were used.  O’Leary et al. (2008b) applied the elicited information to the larger rock-
wallaby dataset (with N=200); and found that the best tree using expert informed priors had a lower FNR 
than the best tree using non-informative priors.   

 

Tables 1, 2, 3 and 4 display the loss matrix acquired from methods A, B, C and D respectively.  Method A 
predicts all presences as absences and eight absences are predicted correctly.  Both methods B and C predict 
all presences correctly, however all nine absences are misclassified as presences. Method D predicts absences 
as well as method A, but more presences are predicted correctly.  The method with the best predictions 
overall, of both presences and absences, is method D (CT).  This method achieved FNR of 0.15 and FPR of 
0.11, whereas method A has FNR of 1 and FPR of 0.11, and methods B and C have FNR of 0 and FPR of 1.  

 

 

7. DISCUSSION AND CONCLUSIONS 

This paper compares four elicitation methods, three for Bayesian logistic regression (LR) and one for 
Bayesian classification trees (CT): a geographically-assisted indirect LR method (Denham & Mengersen; 
2007); a graphically-assisted indirect LR method (Kynn2005); a questionnaire delivered LR method that 
elicits a simplified version of the expert’s opinion directly (O’Leary et al., 2008a); and a simple questionnaire 
suitable for direct elicitation for CTs (O’Leary et al 2008b). The opinions of one expert were elicited using 
these four approaches with the intention of modelling the habitat suitability of the threatened Australian 
brush-tailed rock-wallaby.  These four methods differed according to the form of the model (likelihood), the 
elicitation design and protocol, the prior model, the elicitation tool and requirement for a facilitator. The 
elicitation method that resulted in the best predictions of both presences and absences was CT (method D). 
 

The results show that the approach of elicitation can indeed affect an expert-based prior.  For the aspect 
coefficient, the comparison of the prior and posterior distributions was difficult, since each method elicited 
different characteristics of this variable. However, all four approaches ascertained that the experts’ opinion 
was that sites with northern aspects have the highest probability of presence.  

For consistency with previous LR elicitation comparisons (O’Leary et al., 2008a), the observed dataset of the 
rock-wallaby case study used to compare the four elicitation methods comprised an initial 50 observed sites. 
As is typical with rare and threatened species there is only one expert with current and comprehensive 
knowledge of the species. This trial reveals that one expert’s knowledge can impact models of rare event 
data, such as rare and threatened species presence, providing additional information that may not be 
represented in the small dataset. The BCART method was also applied to combine expert opinion with 
empirical data on 200 sites from a later study (O’Leary et al., 2008b). It was found that better predictions of 
the presences were obtained when expert informed priors were applied compared to non-informative priors.  
This issue is important. Since this species is threatened in Queensland, a priority of conservation 
management is to develop a model that accurately predicts presence of the species, even more so than 

Table 4. Loss matrix obtained from method C. 

Observed   Presence Absence 
Predicted Presence 41 9 
  Absence 0 0 

Table 3. Loss matrix obtained from method B. 

Observed   Presence Absence 
Predicted Presence 41 9 

Absence 0 0 

Table 5. Loss matrix obtained from method D. 

Observed   Presence Absence 
Predicted Presence 35 1 
  Absence 6 8 

Table 2. Loss matrix obtained from method A. 

Observed   Presence Absence 
Predicted Presence 0 1 
  Absence 41 8
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absence. This study provides a concrete example demonstrating that both the underlying model and 
elicitation method impact the information elicited, the posterior estimates obtained, as well as predictive 
performance. 
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