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Abstract:  

Bayesian Belief Networks or BBNs are gaining prominence in ecology. They are a powerful and attractive 
tool for managing and understanding complex processes because they represent the process graphically, 
where each node in the network represents either the prior or conditional probability of the parameter of 
interest. Causal links are represented by arcs that join to nodes and indicate the dependencies between nodes 
in the network. The fundamental idea behind these causal relationships is Bayes’ theorem, which provides a 
premise for combining the prior and conditional probabilities assigned to each node of the BBN to form 
posterior estimates of the quantities of interest that can be readily updated. Despite their popularity and wide 
spread use in solving complex, large scale ecological problems of importance there are a number of issues 
relating to the structure of the model and incorporation of expert information that modellers need to be aware 
of. This leads us to ask “How can we really believe the output from a BBN, given that a large proportion of 
the information feeding into the network often relies on expert opinion that may be inaccurate or carry hidden 
biases?” 

Analysts are faced with three important tasks when producing a BBN: (1) identifying the variables pertinent 
to the problem at hand; (2) identifying the relationships between these variables; and (3) expressing these 
relationships as a series of conditional probabilities. Through this implementation a number of issues can 
arise resulting in an ill-defined BBN which inadequately reflects the underlying system processes nor 
captures and reflects the expert opinion defining these processes well. 

Using a popular BBN software package, Netica™, we examine some of the potential pitfalls of BBNs 
through two specific examples. The first focuses on a fishery management problem, which examines whether 
management should remain passive or seek a more active approach to commercial fishing. The second 
investigates the quarantine risks associated with the importation of commodities and examines the probability 
that pests or diseases will enter a nation with imports of goods. We examine issues of discretisation (process 
of converting a continuous probability distribution to one that is discrete), scaling (process of transforming 
data), complexity (number of nodes and linkages) and network structure (nodes and linkages defining causal 
relationships) in the context of these two examples and show that each can have a dramatic impact on the 
posterior probabilities of each model investigated and therefore have the potential to impact management 
decisions if implemented. In our analysis, we show that although BBNs offer a powerful mechanism for 
capturing both expert information and empirical data (where available) and can also address issues of 
uncertainty through the elicitation of conditional probabilities, there are some aspects of BBNs that the 
modeller needs to consider. We highlight these issues and suggest ways in which to guard against these 
problems so that BBNs are used more appropriately for the modelling exercise being considered. 

 

Keywords: Bayesian Belief Networks; Conditional probabilities; Elicitation; Model structure; Model 
complexity; Prior information. 
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1. INTRODUCTION 

Bayesian Belief Networks (BBNs) are becoming a popular tool for capturing expert knowledge in order to 
assist decision makers in complex, data poor situations (Peterson et al. 2008; Hamilton et al. 2007; Pollino et 
al. 2007; Borusk et al 2004). They represent an attractive decision support tool as they are well suited to 
problems with small or incomplete datasets and they are not restricted by a minimum sample size. They can 
be constructed using expert opinion alone and although they do not rely on any empirical data, it can be 
easily incorporated (Wooldridge and Done, 2004). BBNs are well suited to cross-disciplinary collaboration 
(Pollino et al, 2007) because they can incorporate prior information from a diverse range of disciplines. 
Moreover, the process of building and populating the network forces the analyst(s) to think very carefully 
about the mechanisms, processes and context of their problem (Peterson et al, 2008) as well as any 
uncertainties that arise (Moskowitz and Sarin, 1983). With the ongoing use of expert opinion in modelling 
and the relative ease with which experts’ prior beliefs can be captured and incorporated into a model like a 
BBN, we have to ask the question, “how believable is a BBN?”, especially one that has been constructed 
without much empirical evidence to support its structure or the prior and conditional prior probabilities that 
form its backbone. How influential are the priors in these models and what happens if the expert presents a 
biased judgment on how these should be represented?   

Analysts who choose to use BBNs face three important tasks: (1) identify the variables pertinent to the 
problem at hand; (2) identify the relationships between these variables; and, (3) express these relationships as 
a series of conditional probabilities. The latter probably being the most difficult. The variables and 
relationships between them determine the structure of the network, while the conditional probabilities elicited 
from experts and incorporated into a set of conditional probability tables (CPTs) describes the prior beliefs 
about the relationships between variables, conditioned upon this structure. Although this process seems 
relatively straight forward to implement, there are a number of issues that can arise: 
1. Discretistation - process of converting a continuous probability distribution to one that is discrete and 

therefore has the potential to produce different discretisations depending on the choice of bins used 
(mandatory with Netica) 

2. Scaling – process of transforming (empirical) data e.g. taking logs, z-score, subtracting the mean, etc.; 
3. Structure – nodes and linkages (or dependencies) defining the causal relationships of the BBN; and 
4. Complexity – the number of nodes and linkages in the BBN, and the number of discrete states within 

each node, 
These issues have the potential to result in an ill-defined BBN which does not properly reflect the 
information elicited from the experts about the underlying process of the problem investigated. Analysts who 
have had little experience with BBNs or who have a lack of understanding of the underlying theory or indeed 
of the subject domain that they are modelling fall into this category. Analysts seeking “realism” can, and 
often do, build large networks with twenty or more nodes and hundreds or even thousands of conditional 
probabilities that can be cumbersome to populate and maintain (Borsuk et al, 2004; Walton and Meidinger, 
2006; Pollino et al, 2007). Hence, this relatively simple form of modelling can lead to errors in the structure 
of the model and unforeseen biases in the way in which information is elicited, incorporated and interpreted 
from the model. 

In this paper we address the 4 issues identified above and illustrate their impact in two ecological examples 
using the popular BBN package, Netica™. The first focuses on a fishery management problem which 
examines whether management should remain passive or seek a more active approach. The second 
investigates the quarantine risks associated with the import of commodities and examines the probability that 
pests or diseases will enter a nation with imports of goods. Our investigations reveal that without proper 
consideration of the network structure, complexity and the translation of expert opinion into CPTs with the 
correct scaling and discretisation (for models that require discrete probability distributions) interpretations 
from the BBN can become severely biased and have the potential to mislead management in making 
decisions based on this process. Due to space limitations we omit an overview of the BBN methodology and 
direct readers to the paper by Lauritzen and Spiegelhalter (1988). 

1. CASE STUDY 1: FISHERY MANAGEMENT PROBLEM 

The Northern Prawn Fishery (NPF) is one of Australia’s most valuable commercial fisheries, bringing in 
millions of dollars each year from the commercial trawling of nine species of prawns in the region. In 
addition to capturing prawns, byproduct such as squid, scallops, bugs and cuttlefish are also captured and 
kept as they are seen as a potential source of income by fisherman. The Australian Fisheries Management 
Authority (AFMA) has placed emphasis on determining abundance and reproductive rates for byproduct and 
their vulnerability to trawling (AFMA 2006) and this has the potential to place restrictions on the catch if 
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rates are deemed too high. A problem associated 
with placing restrictions on byproduct catches is 
determining how many of each species are being 
caught. Although byproduct species are regularly 
caught during commercial prawn trawling 
activities conducted in the NPF, information 
about catches concerning byproduct is limited as 
the focus is generally on the target catch. 

In an attempt at managing the two species of 
bugs within the NPF with very limited empirical 
information, we constructed a BBN using 
Netica™ that incorporated monitoring data, 
predictions from models and expert information. 
Due to the sensitivity of this project, we consider 
a simplified version of this model in this paper 
with fictitious priors as shown in Figure 1. The 
aim with this type of modelling is to determine 
whether to passively manage (i.e. continue with 
the “business as usual” approach) or actively 
manage, which may involve additional monitoring 
or a change in management strategy such as an 
increase in the minimum legal size. In order to 
determine the management position, we need to 
compare in any one year what is actually caught, yc 
(via commercial catch records) to some “trigger” 
value, ST that measures sustainability. The trigger 
is determined using a fisheries catch equation 
(Quinn & Deriso, 1999) which incorporates an 
estimate of the biomass, natural mortality, M and 
the sustainable amount of fishing required. This 
sustainable level is determined by the probability 
of compliance, C, the optimal fishing mortality, F 
and the management strategy, S that is actually 
implemented. Here we only consider two 
management strategies, Passive or Active. 

Priors for nodes C and S (Figs. 2a and 2b) were 
discrete and resulted from an elicitation process 
while the priors chosen for nodes B and yc were 
based on empirical catch data from survey vessels 
and commercial log-book data respectively. Both 
of these parameters were assigned Normal 
distributions for log catch as shown in Figures 2c 
and 2d. Natural mortality and fishing mortality are 
defined as constants in this model. Natural 
mortality was based on a study of bugs by 
Courtney (1997), while F represented the optimal 
fishing mortality from a yield per recruit analysis 
under no size restriction. As highlighted earlier, 
the nodes defining the sustainability trigger, 

)1log()log()log( )( MSFeMSFSFBST +−−++−+=
and the sustainable level of fishing, 

FCSCSF ×−+×= )1( , represent deterministic 

functions of parameters causally linked to that 
node in the BBN. Note that the equation for ST is 
presented on the log-scale. 

The very top node of the network represents the 
management position, D, either passive or active. 

 
Figure 3. Conditional probability tables for actively 

managing a fishery. Black pixels indicate a probability of 1 
while white pixels indicate a probability of 0. 

Figure 1. A conceptual model for managing a 
single spatial region in the NPF that was derived 

through stakeholder interaction at a workshop and 
input into a BBN framework. 

 
Figure 2. Priors used in the fisheries model for (a) 

compliance C, (b) strategy S, (c) biomass B and 
commercial catch, 

cy . Note, biomass and commercial 

catch estimates are shown on the log-scale. 
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Figure 3 shows the discrete conditional distribution for the probability of a particular management position 
given the sustainability trigger (y-axis) and commercial catch (x-axis). In this diagram, conditional 
probabilities are represented by a grey scale image, where 1 is represented by a black pixel and 0 is 
represented by a white pixel. As commercial catch increases with respect to the sustainability trigger, the 
probability of instigating a more active management position increases, linearly.  Taking into account all of 
the priors and deterministic relationships, we see that the priors set up in this BBN lead to a low probability 
of actively managing the fishery: p(Active) = 0.295. 

2. CASE STUDY II: IMPORT RISK ASSESSMENT 

Between 1950 and 2002 the total volume of 
goods and commodities traded around the 
world increased exponentially (WTO, 2003). 
Imported commodities are an important 
source of non-native species, and the rate of 
biological invasions around the world has 
consequently increased in an equivalently 
exponential fashion (Levine and D’Antonio, 
2003). Bio-invasion risks are managed 
around the world via a range of international 
and national regulations and guidelines that 
mandate or recommend a variety of risk 
assessment schemes (Hayes, 2003). In this 
case study we examine an attempt to 
quantify and improve the qualitative import 
risk assessment developed by the European 
and Mediterranean Plant Protection 
Organisation (EPPO). The EPPO risk 
assessment consists of a series of 34 unstructured questions relating to the probability of entry, establishment 
and spread of non-native species that may be associated with an imported commodity (EPPO, 2007). Figure 4 
illustrates an early attempt by researchers to improve the consistency, transparency and uncertainty analysis 
of the risk assessment by converting it into a BBN. Note that for the purposes of brevity we only consider 
here the assessment of entry risk. The nodes in the BBN closely resemble the questions in the original risk 
assessment scheme, but the analysts have reduced the number of discrete values from five options (very 
unlikely, unlikely, moderately likely, likely, very likely) to three or four, presumably in an attempt to reduce 
the size of the CPTs. All of the CPTs were subsequently populated with simple estimates.  

As an illustration of the complexity of the network let us examine the node representing the total volume of 
pests arriving at a new location and the large number of conditional relationships that it seeks to represent. 
Close inspection of the CPT underlying this node reveals a large table of conditional probabilities (576 x 9), 
representing all possible combinations of the 9 conditioning variables (Concentration: 4 categories; Volume: 
3 categories; Frequency: 3 categories; Survival: 4 categories; Growth: 4 categories). Note the node 
“unregulated pathway” quantifies the risk that vectors or pathways that are not assessed under the EPPO risk 
assessment scheme are active. Assuming there is very little chance of an unregulated pathway, this network 
suggests that the probability of pest entry is very high: p(Entry) = 0.763 (Figure 4). 

3. ISSUES ANALYSIS 

3.1 Discretisation 

BBNs are quite sensitive to discretisation, particularly in BBN packages such as Netica™ which does not 
have the capacity to use continuous variables. The term “discretisation” used here refers to the process of 
taking a continuous distribution, selecting appropriate bins and allocating observations to intervals prescribed 
by those bins. For example, consider converting the continuous prior distributions shown in Figure 2(c) and 
2(d) into discrete distributions, each having only two states, low (L) and high (H), where the cutoff for a low 
catch is 4 on the log-scale. (Note we also discretised the ST node into low and high catch for simplicity.) The 
commercial catch node now has a prior probability of a low catch of 0.99 while the biomass node has a prior 
probability of 0.14 for a low catch. Re-running the BBN reveals that the probability of moving to a more 
active management position, given the other parameters in the model and these newly formed priors changes 
from 0.295 to 0.025, a very unlikely result. If the cut-off for low catch was defined as 2 on the log-scale then 
the posterior probability of an active management response is 0.224. This demonstrates the sensitivity of 

Commodity Usage
Aiding
Preventing

33.3
66.7

Frequency
Low
Medium
High

 1.0
19.0
80.0

Volume Commodity
Low
Medium
High

70.0
25.0
5.00

Regulated Pathway
Yes
No

20.7
79.3

Unregulated pathway
Yes
No

 1.0
99.0

Entry
Yes
No

76.3
23.7

Distribution commodity
Limited
Intermediate
Widely

   0
20.0
80.0

0.68 ± 0.24

Total Volume Pest Arriving
None
Low
Medium
High

9.75
27.0
38.5
24.7

1.10 Detection
Yes
No

25.0
75.0

Survival during Transport
None
Low
Medium
High

5.00
15.0
40.0
40.0

Growth during transport
None
Low
Medium
High

95.0
3.50
1.50
   0

Concentration of pest
None
Low
Med
High

5.00
25.0
60.0
10.0

Figure 4. An initial BBN for the probability of entry based 
on the EPPOs quarantine risk assessment scheme. 
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BBNs in relation to how a distribution is discretised and the number of states used in the discretisation 
process.  Reducing the number of node states is an important, and recommended (Marcot et al, 2006) way to 
simplify CPTs in complex networks. In our example the change in the outcome does not change 
substantially, for more complicated models however, coarse discretisation could have dramatic effects. 

3.2 Scaling 

As in many cases of Bayesian hierarchical modelling, it is often wise to scale your data before incorporating 
it into a model as it leads to more stable estimates and faster convergence. We have found this also applicable 
to BBNs. We refer to “scaling” as a process of data transformation, where the data are transformed in some 
way (e.g. centred, divided by the standard deviation, log-transformed) for the sole purpose of making the 
estimation process more robust. Working with empirical distributions especially when they are heavily 
skewed as in the case of the biomass and commercial catch data, can lead to problems with the specification 
of priors in a BBN, particularly in packages like Netica™. We have found in instances where we have used 
the raw data and developed distributions accordingly, that the estimates are quite variable. If the BBN 
package cannot handle a prior presented as a continuous distribution then the discretisation issues presented 
above can complicate issues further as the choice of bins can lead to highly variable estimates at these nodes. 
Furthermore, if “uncertainty” is chosen in the Monte Carlo sampling option of Netica™, the estimates can be 
highly variable from run to run. For example, if we replace nodes B and yc with log normal priors with evenly 
spaced bins of 0 to 1000g/ha, we find skewed results for the deterministic ST node. This leads to a 
management position weighted towards passively managing the fishery (p(Passive) = 0.898) and introducing 
more bins seems to exacerbate this further.  

3.3 Network Structure 

BBNs allow managers to explore the effects of 
variability and uncertainty (lack of knowledge) 
on nodes or decision variables within a 
network. This facet is widely touted as one of 
their key strengths (McCann et al., 2006). 
BBNs can easily represent the effects of 
variability within a system, but they are not so 
well suited to uncertainty analysis. A key aspect 
of uncertainty in this context is the structure of 
the model. Analysts rarely explore this 
however, because it requires the specification 
and parameterisation of alternative networks. 
This is time consuming and, in practice, the 
effects of this type of uncertainty are rarely explored, despite the fact that errors in the network’s structure are 
far more important than numerical inaccuracies within it (Druzdzel and van der Gaag, 2000).  

The structure of the EPPO risk assessment BBN (Figure 4) was designed to emulate the EEPO schema. The 
conditional independence between survival and growth and between volume of pest arriving and detection, 
however, is questionable. Figure 5 presents an alternative, arguably more plausible structure that explicitly 
allows for negative (or positive) density dependant growth effects during transit, and conditions the 
probability of detection upon the number of arriving individuals. Note the reversal of the probability of entry. 
This effect is partly due to the negative density dependence relationships (that might plausibly be positive), 
but is overwhelmingly due to the positive dependence between probability of detection and number of pests 
arriving with a commodity (which is very unlikely to be anything other than positive).  

Finally it is important to note that the analyst may encounter other types of uncertainty in the structure of a 
BBN beyond the nodes and arcs. The “unregulated pathway” node in Figure 4, for example, is an example of 
“model domain” uncertainty (Morgan and Henrion, 1990) - in this case whether or not the pest will enter the 
nation through some pathway other than that which is being assessed by (in this case) the network. In this 
example it makes very little sense to be uncertain about the domain of the assessment, particularly in the 
manner expressed in Figure 4. Domain uncertainty here is expressed by a parent-less node whose child is the 
endpoint of the analysis (probability of entry), and is therefore very likely to be the most important node in 
the entire network. It might be better expressed by a separate network(s) that address other pathways. 

3.4 Complex versus Simple 

There are clear advantages in simplifying a BBN: the elicitation process is much simpler and requires less 
from the experts and the model is also much simpler to interpret. However, although the model is less 

Figure 5. An alternative BBN for the probability of entry 
based on the EPPOs quarantine risk assessment scheme. 
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complex, it also may miss key pathways that could potentially lead to a different end result. Furthermore, 
when experts construct simple models or parameterize simple CPTs, they are more likely to omit hidden 
beliefs and assumptions about the nature of the variables’ relationships than if more detail were represented. 
In more complex models, there can be more transparency, and greater capacity to examine all plausible 
pathways. Take for example the fisheries management model in Figure 1. One way to simplify this model is 
to strip the network back to 3 nodes: D, yc and ST. We could either choose to elicit a continuous probability 
distribution that is discretised in Netica™ or alternatively, opt for a discrete specification of priors for these 
nodes. We examine the latter here so we can concentrate on the complexity of the model. In this example, we 
categorise commercial catch and sustainability into low, moderate and high values with probabilities assigned 
to each that reflect the continuous prior distributions shown in Figure 2. The result of this specification is that 
the posterior probability of actively managing is now 0.38, considerably higher from the estimate produced 
from the model in Figure 1.  

4. DISCUSSION AND CONCLUSIONS 

BBNs are becoming an important modelling tool for ecological applications where data is limited. They offer 
a very powerful and convenient way of incorporating information – whether in the form of expert and/or 
experimental data – by way of prior and conditional probabilities that easily accommodates variability. The 
ease with which these models can be updated also makes them a very attractive model to use when 
experimental data become available as decisions can be made relatively quickly. Despite these features, there 
are a number of issues that modellers need to be aware of when constructing and evaluating a BBN and these 
were demonstrated using two case studies. In summary we recommend that modellers follow a few key 
measures when putting together a BBN for a problem: 

1. Implementation and choice of software: Think carefully about the software you intend on using for the 
BBN implementation as some BBN packages do not deal with continuous probability distributions easily 
and require methods for discretisation. 

2. Representation of priors: Consider carefully how priors and conditional probability distributions will 
be structured in the BBN.  

o If a continuous distribution is represented as a discrete measure, ensure that the states chosen 
are an adequate representation of the continuous process that has been elicited. The 
discretisation should therefore become an integral part of the elicitation process to ensure the 
information elicited is being represented adequately in the network.  

o Parameters that can lead to the elicitation of highly skewed distributions should be treated 
carefully as they can lead to spurious results in the model. Scaling of such variables using a log-
transformation for example may need to be considered at the elicitation phase.  

3. Network structure & complexity: There are clear advantages of simplifying a network, however in 
doing so ensure that the network adequately describes the key processes in the system being studied. 
Importantly, do not parameterise the BBN before exploring other plausible model structures via 
influence diagrams (usually available as unparameterised networks in commercial software platforms) or  
methods, such as qualitative modelling and cognitve maps (Ramsey and Veltman, 2005; Dambacher et 
al., 2002), that enable rapid analysis of alternative model structures. Avoid pursuing a “best” model and 
wherever possible maintain alternative plausible models (Pascual et al., 1997).   

4. Choice of BBN: As BBNs are heavily reliant on expert opinion it is difficult to determine whether the 
model developed is “good” in the sense that the structure of the model and its associated dependencies 
accurately reflect the underlying system processes and the conditional probabilities and priors populating 
the model are accurately represented exhibiting little or no bias. It is our view that  

o BBNs need to undergo rigorous development through a series of workshops containing a broad 
range of experts;  

o workshops should consider (and document) at least two alternative models for analysis, 
validation and interpretation until it can be shown that one model outperforms the other(s); 

o obtain experimental data for nodes of the network to assist in further refinement of the models 
and validation which would lead to a final model that could be used in a decision support 
context. 
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