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Abstract: We will describe several cases studies that illustrate how we have used modelling to improve 
the delivery of health care. The studies cover various settings in health care, utilise a variety of mathematical 
modelling techniques, and include descriptions of the impact of the model on the health care system. The 
studies can be described briefly as follows. 

In the financial year 2006/2007, emergency departments (EDs) in Australian hospitals dealt with 5,287,451 
presentations. Statistical models have been used to forecast the number of patients served by an ED each 
month, and to evaluate the impact of changes and innovations introduced to the ED. 

The operation of an acute care hospital medical service has been described well by a double compartment 
model. Modification to the basic model facilitates the incorporation of occupancy fluctuations, such as winter 
peaks, across the year. These models can improve strategic decision making in relation to hospital beds. 

At a more aggregated level, a cohort Markov model was used to identify the most cost-effective screening 
programme for cervical cancer. The model describes the development of precancerous lesions and 
progression via multiple stages to the advanced form of cervical cancer, and subsequent death. Cancer may 
be diagnosed at any time, via screening or clinical presentation with symptoms, at which point treatment may 
be initiated that will alter the natural history of the disease. The model was used to evaluate a large number of 
screening options, for which it would be infeasible to conduct clinical studies. 

Transition care is a form of health care for hospital patients who have finished their stay in an acute care 
setting but are not be able to return home. Queueing theory has been used to estimate the number of places 
required for a new transition care facility in a hospital. This example demonstrates how modelling has been 
used in applying for funds to support new developments in a hospital. 

These examples illustrate the potential for applying mathematical modelling and simulation in health care. 

Keywords: health services, hospital, time series, cohort Markov model, cervical cancer, queueing theory, 
compartment model 
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1. INTRODUCTION 

“The enjoyment of the highest attainable standard of health is one of the fundamental rights of every human 
being without distinction of race, religion, political belief, economic or social condition” (World Health 
Organisation (1946)). Thus, in its Constitution, the WHO places substantial responsibilities on the States that 
are signatories to ensure the effective delivery of health care services in their countries. 

This paper summarises several case studies, in which the authors have been involved, that illustrate how 
modelling and simulation can assist governments to carry out these responsibilities. The examples are set in a 
variety of contexts, namely, a hospital emergency department, patient flow in an acute hospital, a national 
screening program for cervical cancer, and aged care. They employ a range of models including, time series, 
compartmental models, Markov chains and queueing models. In presenting each case study, we will give a 
brief introduction that sets the scene. 

Collectively, these short stories show the potential for modelling in a wide range of problems in health care. 

2. EMERGENCY MODELS 

Overcrowding in the emergency department (ED) of a hospital is a common occurrence. Most of us have 
attended an ED either as a patient or carer and there is widespread appreciation of the problems and issues. 
Patients and carers are distressed—it is after all an emergency. Doctors and nurses seem to be run off their 
feet, perhaps at the end of a long shift. Decisions are often made quickly.  

A creative writer may see the makings of a TV program in all this. A mathematically minded observer may 
see the ED as a fertile source of opportunities for modelling and simulation.  

This case study deals with two applications of modelling in the ED of an Australian hospital. First, time 
series models were used to forecast the demand for emergency services at the hospital. Second, regression 
models were used to evaluate a new approach to managing patient flow in the ED. Both projects were 
undertaken by multidisciplinary research teams from universities and the hospital. 

Forecasting 
We cannot foresee falling over and breaking an arm, or cutting our hand in the kitchen while preparing a 
meal, or a child waking up in the night screaming with stomach pain. Emergencies are unpredictable. 
However, the number of patients who present themselves to the ED is quite predictable as a function of time. 
This thesis was the basis of the research reported in Champion et al. (2007). 

A research team of academics and clinicians set about exploring patterns of presentations at a hospital ED 
over several years. By regarding the number of presentations over time as a time series, one can apply models 
from time series analysis to the data. Although time series models provide an obvious approach to exploring 
ED data, a review of the literature showed that these models have not been used often in this context. 

The main findings were as follows. The average number of presentations per day over a month did not vary 
much with the month, although the variation was statistically significant. There are more obvious patterns in 
the number of presentations per day over the seven days of the week. And there are clear patterns in the 
number of presentations per hour for the 24 hours over the day. 

One practical outcome of this work is that the hospital modified its staffing rosters in light of the arrival 
patterns discovered in the course of the project. The time series models led to accurate forecasts of the 
number of patients on a monthly basis. In the course of the study, the project threw up many more questions, 
and the team members developed a deeper appreciation of the data and models. 

Evaluation 
Hospitals are continually exploring new ways to improve their services, and striving to develop innovations 
that are based on evidence from research. Innovations need to be evaluated and a typical approach is 
summarised by the following steps.  

1. Decide on a key performance indicator (KPI) that will reflect the quality of the service.  
2. Measure the KPI before the innovation is introduced.  
3. Measure it again some time after the innovation has been introduced.  
4. Compare the values of the KPI before and after the introduction of the innovation. 

This approach, common though it may be, has some obvious flaws. There is no control group against which 
to compare the change in the experimental situation. In reality, it is very difficult to find a suitable control 
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group when evaluating an innovation in a hospital. Also, it is often difficult to attribute the change in an 
indicator to the innovation because lots of things may be changing while the innovation is being considered. 

The following case study suggests that time series models are useful tools for evaluating innovations in 
health care. 

When a patient arrives at the ED, the first stop is at the triage desk. The triage nurse takes the patient’s 
details, assesses the urgency of the case, and assigns a triage rating in accordance with the Australian Triage 
Scale. Then, patients are seen in order according to this triage rating.  

At the hospital where this study was conducted, a new approach to managing patient flow, known as 
“streaming”, was introduced. As usual, all patients receive a triage rating. In addition, the triage nurse would 
decide whether the patient required complex care or not. Patients who did not require complex care would be 
treated on a first-come-first-served basis; patients who required complex care would be treated according to 
their triage rating. It is similar to having a fast queue in a supermarket for people who do not buy many items. 

Regression models were used to evaluate the streaming innovation (Kinsman et al. (2008)). The Victorian 
Department of Human Services has defined certain KPIs by which EDs are assessed. These KPIs were 
selected as the response variables in the regression models. A dummy variable indicated whether the 
observations were from a month before the innovation or a month after the innovation. 

This work demonstrated clearly to the hospital that streaming had a positive effect on the KPIs involved. 
There was considerable interest in these findings at the hospital because there are financial implications for 
the hospital in meeting these government requirements. Furthermore, those associated with the project had a 
better understanding of the role that mathematical models can play in evaluating innovations. 

Summary 
These examples in this first case study show the potential for applying mathematical modelling and 
simulation in improving our understanding of patient flow in the ED of a hospital. The projects had practical 
outcomes that were of benefit to the hospital, and, during the course of the projects, many more interesting 
questions and possible projects were uncovered. 

3. COMPARTMENTAL MODELS 

This case study will describe the application of compartmental models in describing bed occupancy in an 
acute hospital.  

The increasing proportion of older people in Australia presents a range of challenges for communities and 
governments, including a period of greater expenditure on health and other social services. This challenge is 
made even greater when combined with the shift in disease prevalence from acute infectious disease to one of 
chronic disease (Generational Health Review, 2003; Productivity Commission, 2005). 

Health workers are also ageing and many will reach the end of their working lives within the next 8 years. 
The expected large number of retirements comes at a time of forecast high demand for services, a reduction 
of available workers and following a period of insufficient succession planning. Thus, there is a widening gap 
in the ability to supply services, both in terms of capital infrastructure and workforce. 

Hospital occupancy levels have also increased in recent years. The ability to provide services to the growing 
wave of baby boomers that are expected will not exist, ceterus paribus, unless capacity is increased. 
Additional capacity, in terms of capital infrastructure, can be created relatively quickly. There is, however, 
little point in doing so if there are insufficient staff available to provide services to patients. 

The forecast in future demand is of such concern that, in 2006, the South Australian Minister for Health 
reported that there was solid evidence that if the State continued to provide health care using current models 
of service delivery and care strategies, by 2043 the entire state budget will be required to meet the costs of 
providing health care.  

Given the increasing demands being placed upon the health services and the likelihood of significant staff 
shortages, there are serious consequences in both economic resource allocation and patient (and population) 
health outcomes if decisions about future health service structures are incorrect. Given the recent advances in 
computing power and the need to improve decision making, there has never been a more opportune time to 
apply modelling to facilitate improved decision making in the health care sector. One aspect where modelling 
will become increasingly important in the health sector is in relation to modelling decisions around hospital 
beds. 
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In practice, decision making relating to hospital beds has often been based on either some “back of the 
envelope” calculation or a “rule of thumb”. And these approaches have tended to rely on the average length 
of stay (ALOS) metric. The modelling of hospital beds and patient length of stay, which are intertwined, is 
not new; see, for example, Yates (1982), Pendergast and Vogel (1988), and Sorensen (1996). It has been 
recognised that the use of the ALOS for modelling hospital bed issues is flawed; see, Farmer and Emami 
(1990), Harrison and Millard (199), Mackay and Millard (1999), and Costa et al. (2003). There are numerical 
and practical reasons that using the ALOS is inappropriate for use in the development of models, most 
notably that the typical length of stay distribution is highly skewed distribution and not well summarised by 
its mean value. 

Compartmental models offer an alternative approach. A compartmental model describes the flow of 
something, such as patients, through a system, where the system is comprised of a finite number of 
homogeneous subsystems known as compartments. Godfrey (1983) is a standard text on these models. 
Harrison and Millard (1991) introduced compartmental models to describe patient flow. The hospital bed 
compartmental flow model can be represented a shown in the Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A representation of the flow of patients through compartments. The compartments may be virtual 
or real - the patients may not actually change location within the physical hospital (Mackay and Lee, 2005). 

Work to date has focused on two or three compartment bed occupancy flow models to describe the patient 
stay profile within the hospital with additional compartments being added to incorporate the community. See 
Harrison (1994), Mackay (2001), McClean and Millard (1994, 1995, 1998), Taylor, McClean and Millard 
(1996), Harrison (2001).  

An application in Australia and New Zealand 
Recently, compartmental models have been applied to the acute care sector in Australia and New Zealand by 
Mackay with others. See Mackay and Millard (1999), Millard, Mackay, Vasilakis and Christodoulou (2000), 
Mackay (2001), Mackay and Lee (2004a, 2004b, 2005), Mackay, Lee, Millard and Rae (2004), Harrison, 
Shafer and Mackay (2005), Mackay (2006). 

In his PhD thesis, Mackay (2007) explored whether the deterministic compartmental flow models of bed 
occupancy, described by Harrison and Millard (1991) in an aged-care facility in the UK, could be adapted, 
and enhanced, for application in Australia and New Zealand. The research sought to answer the following 
questions. 

• Can the compartmental flow models be successfully applied to the acute care data? 

• Can the models be used for other purposes, such as forecasting, evaluation of service change, and the 
effects of altering funding policy?  

•  Can bed occupancy compartmental flow model could be further developed to enable a better fit of the 
data?  

• Could sensitivity and simulation techniques be used to incorporate uncertainty? 

C o m p a r tm e n t  1  –
e .g .  s h o r t  s ta y  
p a t ie n ts

C o m p a r tm e n t  2  –
e .g .  lo n g  s ta y  
p a t ie n ts

C o m p a r tm e n t  n

P a t ie n ts  e n te r  
th e  s y s te m P a tie n ts  le a v e  

th e  s y s te m

P a tie n ts  le a v e  
th e  s y s te m

P a tie n ts  le a v e  
th e  s y s te m

F lo w  to  n e x t  c o m p a r tm e n t

F lo w  to  n e x t  c o m p a r tm e n t

C o m p a r tm e n ts

C o m p a r tm e n t  1  –
e .g .  s h o r t  s ta y  
p a t ie n ts

C o m p a r tm e n t  2  –
e .g .  lo n g  s ta y  
p a t ie n ts

C o m p a r tm e n t  n

P a t ie n ts  e n te r  
th e  s y s te m P a tie n ts  le a v e  

th e  s y s te m

P a tie n ts  le a v e  
th e  s y s te m

P a tie n ts  le a v e  
th e  s y s te m

F lo w  to  n e x t  c o m p a r tm e n t

F lo w  to  n e x t  c o m p a r tm e n t

C o m p a r tm e n ts

47



Karnon et al., Mathematical modelling in health care 

Administrative data were obtained from an Australian and a New Zealand hospital containing patient date of 
admission and discharge. The occupancy data for a large period (e.g., a year) were summarised using the 
average and standard deviation. The number of data points was reduced to a matrix of 2 (average and 
standard deviation) by approximately 100 (maximum time since admission) or 200 data points. 
Compartmental models were fitted to the data with the number of compartments varying between one and 
seven. The method of maximum likelihood was used to optimize the fit. The Bayesian information criterion 
provided information about the level of fit and complexity; the absolute error only provided information 
about model fit to the data. 

Results 
The acute care data from Australia and New Zealand was found to be well described by the compartmental 
model. The question of model complexity was considered and when the issue of the value of additional 
information about long-stay patients was taken into account, a two-compartment model of occupancy was 
found to describe the data sufficiently well. 

Harrison and Millard’s model was further developed to include other variables such as patient age, 
seasonality, and vacancy and to enable the application of simulation. Figure 2 summarises these 
developments.  

Discussion 
There is a continuum upon which decision making occurs. Strategic decision making is concerned with 
decisions that will occur in a longer time frame whereas operational decision making relates to decisions that 
come into effect in a short space of time. Strategic and operational decision making criteria may share some 
common inputs, but this will not always be the case. The weight placed upon the common factors may be 
different. Thus, it is likely that the models that can assist decision makers for strategic and tactical decision 
making will be different.  

Compartmental models have the potential to contribute to improve decision making at the strategic level. 
They have the added advantage that they are easily interpreted by clinicians and decision makers. 
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4. SCREENING FOR CERVICAL CANCER 

Most developed countries to establish some form of publicly funded health care system. A common problem 
in such systems is that there is more demand for health care than could possibly be funded from the public 
purse, and so choices have to be made about what interventions are provided to which patients. Given the 
need to distribute scarce resources, publicly funded health care systems generally have an objective of 
maximising the health benefits produced by the system (efficiency), subject to consideration of the equitable 
provision of health care. 

Economic evaluation or cost-effectiveness analysis is a technique that estimates the costs and benefits of 
alternative health care interventions to inform the efficient allocation of resources. Individual economic 
evaluations involve comparisons of alternative interventions for the same class of patients, for example, 
patients with early breast cancer. The results of individual evaluations are compared to determine the best use 
of resources across diseases.  

A simplified example of the resource allocation process is provided by a health care system in which there 
are two diseases, with two treatment options for each disease. The respective costs and benefits (represented 
as units of health gain) are presented in Table 1. Treatments are not divisible, so that all patients in each 
disease group receive the same treatment. If the budget is $15,000, it is clear that health gains are maximised 
by allocating resources to Treatments 1A and 2B (17 units of health gain compared to 14). More generally, 
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Figure 2: Development of the original deterministic compartmental model to incorporate seasonal 
variation and variability of patient arrivals.
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we can assess the relative value of the two more effective treatments (1B and 2B) by comparing their 
incremental cost-effectiveness ratios (ICERs)where ICER is defined by: 

ICER = CostB − CostA

Health.GainB − Health.GainA

 

In the example, the move from treatment 2A to 2B gains units of health at a cost of $500, whilst 1B gains 
units at a cost of $800, so 2B is more cost-effective than 1B. In a real health care system, where there are 
many thousands of separate conditions to be treated, it is not possible to list the costs and benefits of all 
possible treatments. Instead, we define a threshold value for the ICER that is assumed to represent the ICER 
of treatments that would be displaced in order to free-up funds to provide the treatment being evaluated. If 
the ICER of the treatment being evaluated is under the threshold value, then it is defined as being cost-
effective. 

In order to provide a common basis for comparisons between treatment areas it is necessary to estimate 
differences in costs and benefits in a similar manner across evaluations. In practice, this means using a 
generic measure of outcome (quality adjusted life years (QALYs)) and estimating costs and benefits over the 
remaining lifetime of the patient population. QALYs are estimated by applying utility weights to patients’ 
survival that represents their health-related quality of life, where 0 and 1 are equivalent to death and perfect 
health, respectively. As an example, a patient living for 5 years in a health state equivalent to 80% as good as 
perfect health, followed by 5 years in a state 60% as good as perfect health is alive for 10 years, but gains 7 
QALYs. 

Clinical effectiveness is commonly established via randomised controlled clinical trials, but such studies are 
subject to limited follow-up periods that generally preclude the estimation of lifetime costs and benefits. In 
other cases it is either not practical or ethical to undertake clinical trials. In both cases, it is necessary for 
economic evaluations to synthesise data to predict the long terms costs and consequences of health care 
interventions (Briggs et al. (2006)). The most common framework for such syntheses is a Markov model, 
though simulation techniques are also used for more complex scenarios.  

The model describes disease progression in a cohort of patients, represented as transitions between discrete 
health states from the point at which treatment is implemented. Cost and utility weights are applied to each 
health state, and summed over the time horizon of the model to estimate total costs and QALYs. The impact 
of treatment is described in terms of how it alters the pathway of progression between the defined health 
states. 

The following section provides a brief description of an economic evaluation of screening for cervical cancer, 
which informed the allocation of resources at a national level in the United Kingdom. Full details of this 
evaluation are in a published monograph by Karnon et al. (2004). 

Model development 
The research question was “What is the effectiveness and cost-effectiveness of liquid-based cytology for 
cervical screening compared with conventional smear testing?” 

A Markov process was used to describe the life experience of a cohort of women followed from age 18 to 95 
years, with respect to the incidence and progression of cervical cancer. Pre-invasive cancer was defined as 
cervical intraepithelial neoplasia (CIN), which may be of three levels - CIN1, CIN2, and CIN3. In the 
absence of intervention, the disease is assumed to progress through each pre-invasive stage and from CIN3 to 
invasive cancer, with the proviso that regression to a disease-free state may occur from CIN1 only.  There is 
some evidence that the higher grades of CIN may also regress (Sherlaw-Johnson et al. (1994)), and this 
possibility was explored in sensitivity analyses. 

The model calculates state transitions at intervals of six months, which were informed by an earlier stochastic 
modelling study that had calibrated transition probabilities to observed estimates of the incidence of invasive 
cervical cancer (Sherlaw-Johnson et al. (1994)). Within any six-month interval, CIN lesions may progress to 
the next immediate state, though a proportion of fast growing CIN1 lesions may directly progress to CIN3. 
Age-specific incidence rates for CIN1 were applied, but disease progression was assumed to be non-age-
specific. 

A constant risk was assumed for mortality from invasive cancer, based on an average life expectancy with 
invasive cancer in an unscreened population of approximately 10 years  (Obralic et al. (1997)) and a mean 
duration pre-diagnosis of approximately 5 years. The model incorporated age-specific other cause mortality 
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using life tables produced by the Government Actuary’s Department (Government Statistical Service Review 
of the Registrar General). 

Upon the confirmed detection of a lesion (either through clinical presentation or via the screening program), 
treatment can be initiated with the intention of removing pre-invasive lesions or slowing the rate of progress 
of invasive lesions. Screening can be implemented at different time intervals, and the alternative screening 
tests have different levels of accuracy for correctly detecting women with a cervical lesion (sensitivity) and 
identifying women with no lesions (specificity). Thus, improvements in test sensitivity increase detection 
rates, leading to earlier treatment, reduced disease progression, and improved survival and quality of life. 

The uptake rate of a screening programme was informed by a pilot screening study, and it was assumed that 
women either attend screening at regular intervals or not at all. Both screening procedures produce a 
proportion of inadequate screens that require rescreening, which have cost consequences. Confirmation of 
positive screens involves a colposcopy, which was estimated to be 100% sensitive and specific. It was further 
assumed that all abnormalities found at colposcopy are treated. 

Total direct costs of screening, diagnosis and treatment are included within the model and estimated from the 
following unit costs: conventional smear test, liquid-based cytology techniques, colposcopies, treatment of 
pre-invasive lesions, and treatment of invasive cancer.  

Model validation 
Reported incidence of invasive cervical cancers across all ages is 12 per 100,000 per annum (Office of 
National Statistics (1993)) which is comparable with the predicted incidence of 11.64 by the baseline model. 
The age-specific incidence figures predicted by the current model were compared with those predicted by an 
alternative model (Myers et al. (2000) which showed that the two models predict virtually the same pattern of 
incidence over a lifetime. 

Results 
Table 2 presents the cost and benefits (measured in years of life gained) for a cohort of 100,000 women aged 
18 years, over their remaining life time. The results show that when the cost-effectiveness ratios are re-
estimated to exclude dominated options, screening at a regular interval of three years using liquid based 
cytology is cost-effective, whilst screening at 2-year intervals approaches a reasonable level of cost-
effectiveness. 

A wide range of sensitivity analyses were undertaken that investigated the impact of altering the values of 
incidence rates for CIN1; disease progression rates; screening test sensitivity; rates of inadequate cervical 
smears; costs of screening; and discount rates. The impact of assuming regression from CIN2 and CIN3 
lesions was also tested. Finally, the impact of quality adjusting survival was also tested by applying utility 
decrements to time spent with invasive cancer, waiting for confirmation of borderline screening tests, and 
undergoing a colposcopy. Liquid based cytology remained cost-effective over all of these analyses, though 
the optimal time period between screens varied. 

Discussion 
The case study model was developed as part of the independent process of health technology assessment that 
is used to inform resource allocation decisions in the UK. The National Institute for Clinical Excellence 
(NICE) commissioned our research group at the University of Sheffield to undertake the study, which was 
then subjected to a process of external peer review. The revised report, National Institute for Clinical 
Excellence (2000), was then presented to the NICE Technology Appraisal Committee, who “considered that, 
taking into account a number of factors – including the potential for increased sensitivity, reduction of 
inadequate smears and probable improvements in laboratory efficiency – the LBC method was likely to be 
cost effective compared with the Pap smear, despite its higher associated cost” (p. 14). They further stated 
that the health service should “develop implementation plans for the adoption of LBC as the primary means 
of collecting and processing samples” (p.16). 

This case study provides one example of the many model-based economic evaluations that have been used by 
NICE and other reimbursement committees, such as the Pharmaceuticals Benefits Advisory Committee in 
Australia and the Canadian Expert Drug Advisory Committee. Modelling is an integral part of the resource 
allocation process in these countries. Moreover, the need for such models will expand as policymakers realise 
that explicit cost-effectiveness analyses should inform disinvestment decisions, as well as investment 
decisions. 
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In addition, the increased interest in public health interventions that aim to prevent, rather than cure, disease 
will require the development of new and more complex cost-effectiveness models. An example is an obesity 
model that we are currently developing that will link risk factors to obesity to the health consequences of 
obesity at an individual level, and then combine individuals to describe the population effects of obesity, and 
the cost-effectiveness of population-based interventions to combat obesity. 

The future of health care is expensive, and will require tough decisions. Mathematical and simulation 
modelling are important tools that can better inform these decisions. 

 

Treatment options 
Total costs 

Units of health 
gain 

ICER* 

Disease 1 

Treatment 1A $1,000 5  

Treatment 1B $5,000 10 $800 

Disease 2 

Treatment 2A $10,000 4  

Treatment 2B $14,000 12 $500 

Table 1: Costs and benefits in a two disease health care system 

* incremental cost-effectiveness ratio (incremental cost per additional unit of health gained) 

 

  Lifetime 
cost* 

Incremental life 
years gained* 

Incremental life 
years gained* 

Average cost per 
life year gained† 

Incremental cost per 
life year gained‡ 

Dominated 
options excluded¶

No screening 
£315,139    

 
 

Screening 

5 yearly  

Conventional 
£5,226,157 15,610 15610 

- 
£315  

Liquid-based  
£5,296,879 407 407 £174 £174 £311 

Screening 

3 yearly 

Conventional 
£7,918,977 173 173 £4,643 £15,195  

Liquid-based  
£8,026,471 159 159 £3,789 £677 £8,241 

Screening 

2 yearly 

Conventional 
£11,242,895 23 23 £7,896 Dominated  

Liquid-based  
£11,390,271 69 69 £7,418 £2,140 £36,719 

Table 2:  Cost Per Life Year Gained of Cervical Cancer Screening Interventions (Costs discounted at 
6%, life years discounted at 1.5%) 

* per 100,000 women (uptake rate 85%). 

† Compared to conventional pap smear testing at 5-yearly intervals 

‡ Each screening option is compared to next less costly option, e.g. LBC screening every 5 years is compared 
to conventional pap  smear testing every five years, conventional pap smear testing every 5 years is compared 
to no screening. 

¶ Options are extendedly dominated if the following option has a lower incremental cost-effectiveness ratio 
(i.e. the next option would always be chosen if the dominated option were chosen). 

5. AGED CARE 

Transition care is a form of care for patients moving between hospital and either home or other suitable 
accommodation. Consider the case of an elderly woman who has broken her collarbone and received acute 
care in a hospital. It may be that, when the patient is ready for discharge from the acute care setting, it is not 
be appropriate for her to return home. She may need some low-intensity care to get back her mobility while 
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some changes are made to her home. It may be necessary to find alternative accommodation for her in a 
nursing home or hostel. In such cases, the patient may be eligible for transition care. 

The Australian Government has a formal definition of transition care which states, in part: “Transition Care 
provides short-term support and active management for older people at the interface of the acute/sub-acute 
and residential aged care sectors.” (Australian Government Department of Health and Ageing (2005), p. 17).  

In planning to establish a transition care in a hospital, the manager has to consider the question: How many 
beds should we provide for the transition care unit? Too many beds will lead to waste of resources, too few 
beds will not satisfy demand. The manager needs a methodical approach to considering this question. In this 
case study, we summarise one approach to answering this question using ideas from queueing theory. Further 
details can be found in Crombie et al. (2008). 

Each week, a certain number of inpatients require a place in the transition care unit. If a place is available, 
then the patient is transferred to the unit; otherwise, the patient must wait until a place becomes available. 
Once in the unit, the patient is cared for until discharge.  

This situation fits a classic queueing model. The six basic characteristics of a queueing system can be 
interpreted as follows (Gross et al., 2008, Chapter 1). 

1. If an inpatient requires a place in the unit, then we say that a patient has arrived for service. We assume 
that the number of patients who arrive for service each week is a random variable. We can go further. In 
any week, there is a large number (n) of inpatients in the hospital but only a small proportion (p) of them 
require transition care. Thus, in any week, the number of new arrivals is a random variable which has, 
approximately, a Poisson distribution with mean λ=np. 

2. The service time is the length of time, in days, that a patient spends in transition care. We assume that 
the service times of patients are independent and identically distributed random variables, and that the 
distribution does not depend on the number of patients waiting. Let μ denote the expected service time. 

3. We assume that a patient is served on a first-come-first-served basis. This assumption is the least reliable 
of the assumptions made in this model. Clinical staff may apply some sort of priority system based on 
the needs of patients waiting. The “queue discipline” may vary from hospital to hospital. 

4. The system’s capacity is the number of inpatients who are waiting for a place in transition care plus the 
number being served. 

5. The number of service channels in the system is the number of places or beds in the transition care unit. 
The transition care unit can serve many patients simultaneously. We will denote the number of service 
channels by c. 

6. There is only one stage of service in the model, namely, caring for a patient in the transition care unit. 
A knowledge of these characteristics is important for being able to analyse an application of a queueing 
model.  

In light of the potential complexity associated with these six parameters of a queueing model, the following 
result is remarkable in its simplicity. Suppose that c=∞. This means that the transition care unit has infinitely 
many beds and there would be no waiting. At any time, t, the number of patients in the system would be the 
number of patients in the transition care unit. Let us denote this random variable by N(t). Then we have the 
following result (Gross et al. (2008)): 

limt →∞ P(N(t) = k) = exp(−λ /μ)(λ /μ)k

k!
,(k = 0,1,...). 

In other words, in the long term, the random variable N(t) has a Poisson distribution with mean λ/μ . The 
remarkable aspect of this result is that it does not depend on the distribution of service time—and it is usually 
difficult to estimate this distribution in health care applications. 

A manager can use this result as follows. Suppose that we know λ and μ . If the transition care has been 
established for some time (t is large), then we can find the approximate distribution of N(t). Suppose that we 
find that P(N(t)≤15)≈0.90. Then we know that 90% of the time, 15 beds will suffice and, in 10% of weeks 
will there be no room for new patients to enter transition care. By experimenting with different values of λ 
and μ , the manager can use these sort of results to explore options and eventually decide on an appropriate 
number of beds. Although the approach does not give the manager one specific answer, it does allow the 
hospital to get a feel for the issues. 

This case study leads to interesting problems. When is t large enough to apply this limiting result? Could one 
create a more realistic model by adapting the result to deal with a priority queue (Jaiswal 1968)? How can the 
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manager apply this result in planning the introduction of transition without any historical data to indicate the 
values of λ and μ ? This point is discussed in Crombie et al. (2008).  

This general approach could be applied in many different situations in planning for resources for community 
services. 

6. CONCLUSIONS 

Many aspects of the management of health care systems are quantitative. The examples above are drawn 
from systems that are hospital based, state-wide, or national. In each case, the mathematical researcher has 
been able to add to the expertise of the clinicians and policy makers. They illustrate that modelling and 
simulation can play an important role in improving health care systems at all levels. 

Many ideas connected with modelling in health care can be applied to other community services. Housing, 
the justice system, and child care are just three examples where one finds congestion, or bottle-necks, or 
waiting lists, or innovation, or data. Their presence suggests opportunities for modelling and simulation. 

Often, when one encounters a modelling problem in health care, there are corresponding problems associated 
with information systems. For example, alongside the issue of modelling patient flow in a hospital are the 
many, large problems associated with capturing data that can be used in modelling and planning. 

How can we increase the use of modelling in the health sector? Alliance with powerful champions who can 
promote the use of modelling within the sector may be a short-term mechanism to overcoming barriers. 
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