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Conventional practice in modelling requires checking that a model is correct with respect to its 
conceptualisation (verification) and that it corresponds to the real world phenomenon modelled (validation). 
Verification and validation assure the external and operational validity of a model (its quality). In settings 
where data for estimation is not readily available, the behaviour of the computational model and its results 
are questionable. An alternative approach that has been recently gaining attention is docking or replication, 
which is a process where one model is tested against another to see if they produce the same results. 

This paper reports on the docking experience and validation stages performed when replicating a fuzzy logic 
(FL) model’s findings with an agent-based model (ABM) in the context of innovation in business networks. 
Using two modelling paradigms and software programs, we modelled in an 18 month-interval a network of 
three agent categories, which collaborate on adopting and advancing new ideas and technologies. The 
network links describe relations between agents, which drive processes of innovation. The autonomous 
agents are organisations of different sizes, characteristics, and roles and they interact/share 
resources/collaborate for the purpose of adoption and diffusion of innovation that fits with the organisation’s 
goals. Depending on their resources, there is scope for innovation or otherwise. In addition, the environment 
can foster or hinder the innovation processes. 

The verification and validation of these two models involved several stages: 
1) Expert judgement - the structure of the conceptual model is supported by literature and discussions with 
colleagues in various forums; 
2) Checking the correspondence between what is emerging from the model and what is expected to be seen in 
the real world (passing the believability test); it is desirable for the model components to adequately represent 
a real equivalent behavioural effect but as real data was not available at the time of designing the models, the 
alignment of the model results to expectations acts as an external validation of the model; 
3) Internal validity – assessing consistency by changing input data distributions and analysing extreme 
conditions. 
4) Docking (also known as alignment or replication with contrasting alternative theories) - comparing the 
results of the two different modelling approaches. The models ensured the distributional equivalence, but 
they were not identical. 

As both models used the same parameters, we believe that the differences in results arose only from relaxing 
the restrictive assumptions in the FL or ABM models. The ABM results matched the FL conditions tested. 
The stochastic ABM generated a distribution of outcomes caused by random encounters among agents, while 
FL generated an ensemble of crisp values as result of multiple rules of interaction applying simultaneously. 
The replication experience has been a positive one. Although this does not justify the models’ acceptance, the 
docking results encourage us to pursue collecting data to validate empirically both models in the near future. 

We conclude with some thoughts from Kleindorfer et al. (1998) in relation to various positions in the 
philosophy of science with respect to validation: in the simulation literature there is a continuum of opinions 
ranging from extreme objectivist (model validation can be separated from model builder and its context) to 
relativist (“model and model builder are inseparable” and “validity is a matter of opinion” – Kleindorfer et 
al., 1998:1097). Their debate leads to a perspective that simulation modelling should not follow a prescriptive 
set of approaches to validation, but rather modellers should “responsibly and professionally argue for the 
warrant of the model”. 
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1. INTRODUCTION 

Development of modelling techniques and their large adoption as commonly accepted research 
instruments/standard methods depends on their accuracy and transparency (Richiardi et al., 2006; Midgley et 
al., 2007; Wang and Lehman, 2007), which in turn calls for standards of evaluation in modelling. Hence, for 
new approaches/techniques to become mainstream research approaches and realise their scientific potential, 
further work needs to be conducted into how models are validated and verified (Cioffi-Revilla, 2002; 
Maguire et al., 2006; Richiardi et al., 2006).  

A number of researchers recently highlighted the need to develop a suite of "best practices" allowing them to 
validate and verify the computational simulation models they develop (Maguire et al., 2006; Wilensky and 
Rand, 2007; Richiardi et al., 2006; Louie and Carley, 2008; Wang and Lehman, 2007; Windrum et al., 2007). 
Verification (checking that a model is correct with respect to its conceptualisation) and validation (checking 
that a model corresponds to and explains the real world phenomenon modelled) support the external and 
operational validity of a model but if data for estimation is not readily available, the behaviour of the 
computational model and its results are questionable (Wilensky and Rand, 2007). Proof that a simulation 
model is correct is in general difficult especially if traditional validation methods are not applicable 
(Wilensky and Rand, 2007; Louie and Carley, 2008). Statistical validation should not be seen as providing 
the “absolute” validity of the model (Robinson, 2005; Midgley et al., 2007) and alternative approaches need 
to be considered. Docking, alignment or replication of the models is such an alternative approach that has 
been recently gaining increasing attention. Docking is a process where one model is tested against another to 
see if they produce the same results (Maguire et al., 2006). If different implementations of a conceptual 
model produce similar findings, that lends support to the models in mimicking the real world phenomenon. 
This paper briefly reviews literature focusing on the lack of standards for validation and reports on the 
docking experience and validation stages performed when replicating a fuzzy logic (FL) model’s findings 
with an agent based model (ABM) in the context of innovation in business networks (Purchase et al., 2008). 
Replication standard holds that sufficient information exists to understand, evaluate, and build upon a prior 
work, so that results can be replicated without any additional information. In our case, the same researchers 
built the two models for exploring innovation creation and change of resources in business networks within 
18 months, making the replication effort less arduous.  

2. APPROACHES TO VALIDATION AND VERIFICATION 

Validation has been defined as “substantiation that a computer model, within its domain of applicability, 
possesses a satisfactory range of accuracy consistent with the intended application of the model” (Kneppel 
and Aragno, 1993:3 cited in Klein and Herskovitz, 2005: 305). Traditionally, this requires empirical evidence 
to check/compare the output of the model. If this does not pass the scrutiny or the test cannot be performed, 
the model cannot be demonstrated as correct. Many researchers have recently addressed the verification and 
validation standards and suggested other avenues or provided frameworks for validating simulation models - 
Klein and Herskovitz (2005), Richiardi et al. (2006). Klein and Herskovitz (2005) examined the contrasting 
philosophies of science of Popper, Quine, and early-period Putnam and recommended Popper’s framework 
for validating models. According to Popper’s falsificationism, models should be submitted to severe tests and 
if a model “passes such test by remaining not falsified, it is viewed as only a conjecture that will do for now, 
a mere tentative representation of reality” – Klein and Herskovitz (2005): 307. With this stance, statistical 
hypothesis testing is labeled as falsificationist and the impossibility to support consistency between model 
results and real data is translated in rejection of the model. Models may be temporarily validated and they 
need to be continuously reassessed. Quine shares Popper’s view that a theory can never be proven true, but 
unlike Popper, Quine held that “neither can it be proven false” (Klein and Herskovitz, 2005: 313). In the 
early-period Putnam’s perspective, a “scientific theory‘s long term record of making correct predictions is 
grounds enough for accepting the theory as at least approximately true” - Klein and Herskovitz (2005): 316. 
Accordingly, “there can be no definitive rejection of a model, and so there are no incentives for model 
improvement” (p. 318).   

Richiardi et al. (2006) highlighted the need for a common protocol for validating and reporting simulation 
models. Their review includes five types of validity for simulation models that are theory and data based: 
theory validity (validity of theory relative to real-world system); model validity (model relative to theory); 
program validity (program relative to model); operational validity (theoretical concepts relative to their 
indicators); and empirical validity. Drawing on Sterman (1984), Richiardi et al. (2006) also suggest heuristic 
questions to address different validity facets: structure verification; extreme condition and boundary 
adequacy for validity of model structure or behaviour reproduction, anomalies, family member, extreme 
policy for validity of model behaviour (Richiardi et al., 2006:8). Within their framework a number of 
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different techniques can be used for validation, with some techniques covering more than one category of 
model validation. Similar views are found in many other papers addressing modeling validity. Louie and 
Carley (2008) distinguish between validation processes (series of steps for validation) and techniques 
(individual methods applied to ascertain the validity of the model - or a part of it) and advocate that the 
validation process should be linked to the purpose and context for which the model is being developed (p. 
243). They also differentiated among three types of validation: conceptual, data, and operational validity, 
each conferring a different type of credibility to a model. The conceptual validity refers to the extent to which 
model theory and assumptions are appropriate for the model. Validity of data ensures that data is appropriate, 
accurate, sufficient for the model, whilst the operational validity looks at the extent to which the model 
output matches the real system for the purpose it was built.  

This preamble on validation issues stresses two important aspects: i) there is no consensus among researchers 
on what is considered validity and how to address it and ii) there are degrees of validity (relativity in judging 
validity) that can be achieved using a combination of instruments/methods. 

Although validation against real data is desired, lack of available experimental observations compelled us to 
search for alternative ways to assess the predictive capabilities of our models. Our choice was docking 
(Axtell et al., 1996; Wilenski and Rand, 2007). Axtell et al. (1996) developed the basic concepts and methods 
of docking to explore how alignment of the results of one computation simulation with the results of a 
replicated model can assist model validation. Model-to-model replication differs from model re-
implementation (re-writing code) and docking only refers to model replication (the model being re-written 
with different mechanisms or processes used to conduct the simulation). Docking/replication assures the 
researcher that the model outcomes are stable (repeatedly generated) and not produced by exceptional 
circumstances (Wikensky and Rand, 2007) and thus it allows the researcher to establish an indirect 
relationship between the theoretical underpinnings of the model and its results. Replicated models differ 
across six dimensions: time; hardware; languages; toolkits; algorithms and authors (Wilensky and Rand, 
2007), with the different mechanisms being the most important aspects of replication (Axtell et al., 1996).  

However, replication alone is not sufficient for validation. Criteria are required to delineate the extent of 
replication achieved and the equivalence of the results. Axtell et al. (1996) provided three categories for 
assessing docking: numerical identity, distributional equivalence, and relational alignment. Numerical 
identity suggests results that are numerically the same in the two models. Distributional equivalence 
considers that the distributions of results are statically indistinguishable. Relational alignment highlights that 
the patterns of interactions in the models as the same across the two models (Axtell, 1996).  

Other techniques that can be applied for validation and verification but are not addressed here include: 
developing simulation rules or indicating that patterns of model results are consistent with real-world 
processes through methods such as case analysis; discourse analysis and action research (Richiardi et al., 
2006; Maguire et al., 2006). 

3. MODELLING INSTRUMENTS 

3.1. Model design/structure 

Our purpose is to model changes in the information/knowledge and 
financial flows within a business network with actors interested in 
innovation. This is a symbolic network (Watts, 2004) where links 
describe abstract relations between agents collaborating for sharing 
new ideas and advancing technologies and the model identifies 
what drives processes of innovation (Figure 1). The dynamics of 
innovation involve important characteristics of complex systems1 
(agent heterogeneity, non-linear interactions, network effects, 
stochastic elements and uncertainties), which led us to choosing as 
appropriate modelling approaches agent-based modeling (ABM) 
and fuzzy logic (FL)2.  

     Figure 1. Network structure 

                                                           
1 Complexity is used here in the technical sense that the “behaviour of the system as a whole cannot be determined by partitioning it and 
understanding the behaviour of the parts separately, which is the classic strategy of the reductionist physical sciences” – Gilbert 
(2004):3.  
2 The ABM model was built in NetLogo 4.0 and the FL model in CubiCalc 2.0. 
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The model includes three types of actors with relevant roles in the innovation network (venture capitalists VC, 
manufacturers M, and R&D companies); these organisations have different sizes, characteristics, and roles; they 
interact/share resources/collaborate for adoption and diffusion of new ideas that fit with the organisations’ goals.
Hundred actors are randomly generated in the network then fully connected. The ties can be strong or weak 
(depending on how long the agents have been in contact to each other, the mutual services and amount of joined 
activities they have) and through them money and information flow; spreading of the agents tends to reduce the 
intensity of the interactions via a gravity function moderating the links parameters. Depending on the resources 
they can put together, there is scope for innovation or otherwise; R&D activities require monetary resources and 
reduce the capital stock of the VCs or manufacturers, but the capital will be refreshed by successfully 
introducing a further innovation (considerable increase in the knowledge and skills).  
Environment conditions can foster or hinder the innovation.  
The agents have local, micro-knowledge and do not know what happens within other relations; the collaboration 
does not involve selective search for potential partners, interaction being a stochastic element.  
After specifying the behavioural rules for agents and for their interaction, we explored the consequences at the 
level of the network within the models. Macro-variables such as: financial (F) and knowledge (K) resources, and 
change in the total resources (I) were compared across agents. The model evolves in discrete steps and at the 
end of one run, the actors can assess their resources and position in the network. 

3.2. Agent-based modeling (ABM) 

Agent-based modelling is an alternative to classical thinking where systems’ evolution is expressed using 
functions, equations, and algorithms. ABMs operate with agents, environment, objects which interact with each 
other. In addition to providing a natural and intuitive description of a complex system, ABMs capture emergent 
behaviour (Bonabeau, 2002; Watts, 2004): ABMs “show how simple and predictable local interactions can 
generate familiar but enigmatic global patterns, such as the diffusion of information, emergence of norms, 
coordination of conventions, or participation to collective action.” – Macy and Willer (2002: 143). This means 
entities endowed with certain behaviours and interactions lead to complex spontaneous dynamics in the system 
and large changes could be driven by even subtle modifications maybe imperceptible to actors having only local 
knowledge of the network (Windrum et al., 2007).  

The widespread use of ABM in many fields is a response to the complexity of the real world phenomena and 
data availability and increased computational advances have facilitated it (Pyka and Fagiolo, 2005; Louie and 
Carley, 2008).  

Fundamental characteristics of the ABM regard (Macy and Willer, 2002; Windrum et al., 2007): 
- Autonomy of agents – agents make independent decisions and the system is not directly modelled as a 

globally integrated entity, but self-organising patterns dictate the behaviour of the whole; 
- Interdependence of agents – direct and via environment, network; the collective action result depends on the 

structure of the network (Watts, 2004) and the emergent structure is not the magnification of single agent 
behaviour at a larger scale (Gilbert, 2004; Windrum et al., 2007);  

- Simple rules – global complexity does not necessarily reflect the cognitive complexity of individuals; ABM 
explore the simplest set of behavioural assumptions required to generate a macro pattern of interest 
(Bonabeau, 2002);  

- Adaptive/flexible behaviour – “agents adapt by moving, imitating, replicating, or learning, but not by 
calculating the most efficient action” (Holland, 1995:43, cited in Macy and Willer, 2002:146); agents use 
heuristics, adaptation, ‘evolution’/learning to change their strategies; 

- Dynamics nature – always in motion (Bonabeau, 2002; Gilbert, 2004); the state of the system is path 
dependent and by definition out-of-equilibrium (Pyka and Fagiolo, 2005; Windrum et al., 2007). 

3.3. Fuzzy logic (FL) 

The second modelling approach provides an ideal framework to deal with independent layers of data of varying 
degrees of uncertainty/confidence, ‘imprecision’, membership. FL is another paradigm departing from 
traditional mathematical approaches and opening the door to a new way of defining knowledge using statements 
that can be true to a certain degree. Born to deal with degrees of truth (instead of the binary Boolean logic), 
tolerant to ‘ambiguous’, noisy data, and operating with linguistic expressions for reasoning, FL started to spread 
in numerous domains in the last decades (Cordón et al., 2001). The mathematical set theory and logic are 
augmented in FL by making fundamental changes to the ideas of set membership and to the logical operations.  
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The motivation for FL is provided by the need to represent propositions such as: “Companies X and Y are close 
friends.”, “Most R&D do not have very high financial resources.”, “Current market conditions are not 
favourable.”, or “This information is not relevant at all.” 

While traditional set theory defines membership as being either being true or not, FL allows us to address 
growth in a comprehensive manner including the fuzziness about what the agent or innovation really is, the 
fuzziness of antecedents of innovation, and the interactions between agents.  
The reasoning system is based on techniques that combine those membership functions using IF-THEN rules of 
behaviour. There are several structures of the fuzzy systems (including fuzzification interface, inference engine, 
knowledge base, defuzzification), but in this research we used the Mamdani fuzzy rule based system (Cordón et 
al, 2001). 

Each rule has a number of inputs/antecedents and one output/result. The knowledge base for our FL model 
includes 486 “IF-THEN” rules expressing the expert field knowledge of the authors. Multiple rules fire at the 
same time and they may have various weights.  

The FL model is not a micro-scale model, and the results are reflecting the behaviour of the clusters of agents.  

4. VALIDATION PROCESS AND TECHNIQUES 

4.1. Overview 

In this research we addressed the conceptual 
validity, and partly the validity of data and 
operational validity described by Louie and 
Carley (2008). The conceptual validity was 
assessed via experts, data via sensitivity to 
parameter changes, and operational via 
docking/replication (Figure 2). The two dotted 
lines indicate techniques for operational 
validity not possible in our case with the usual 
empirical analysis. Replication (comparison of 
two models developed in alternative 
paradigms) instead supports the validity.      

Figure 2. Model validation (Adapted after Loiue and Carley, 2008: 244). 

4.2.  Validation approaches and stages 

In the innovation network models, the validation involved several stages, presented in Table 1. The left column 
presents types of validation and the right column how the validation was performed and its results.  

Table 1. Validation approaches and stages 

Conceptual validity – based on theories Structure of the model is supported by literature (Denize et al., 2007) 
Expert judgment – discussions with colleagues 
in various forums (seminars, conferences); as 
indicated Bonabeau (2002), validation of ABM 
of social processes inevitably assumes a degree 
of arbitrariness and subjective/expert judgment 

On numerous occasions (IMP and ANZMAC conferences) we found confirmation for the 
representation of each dimension in the model and for the hypotheses included  

Input validation – ensuring that the 
fundamental conditions incorporated in the 
model reproduce aspects of the real system  

Ex ante - verification of the ranges of the parameters of the models (decay of irrelevant 
information, relativity between financial and knowledge resources for the three classes of 
actors) 

Believability test - checking the correspondence 
between what is emerging from the model and 
what is expected to be seen in the real world; 
although not sufficient for concluding that the 
models are correct, indication that model 
components adequately represent a real 
equivalent behavioural effect is necessary when 
real data is not available  
 
 
 

Examples of judging the model output include: 
- a) effect of network density 
Network density creates clusters with enhanced ability to innovate, showing/confirming 
that geography is important; we emphasise the model does not generate a particular pattern 
of clusters, but the grouping that emerges displays the same “signature” – greater resources 
and innovation creation.  
- b) effect of network size 
The smaller the network, the greater the probability for an actor to interact with a previous 
actor. 
- c) analysis of extreme conditions – reducing to zero the resources for each type of actor  
The network collapses according to the rules. 

Internal validity  
– comparing the results from simulations with 
various random seeds for assessing consistency 
- changing the type of the noise  
 

Statistical tests confirmed repeatability (no statistical difference between runs) 
The type of noise was explored by comparing results from: 
- a) changing the normal distributions to uniform distributions  and  
- b) changing the parameters of the normal distributions  
Normal distribution of effects was obtained in all situations (K-S test) 
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Sensitivity analysis – what-if scenarios to 
ascertain the effect of inputs upon the model’s 
output; we conducted sensitivity with respect 
to: strength of relationships and proportion of 
actors  

Sensitivity analysis revealed important effects and we invest to collect data in those fields. 
The hypotheses that guided the experimental design (behavioural space) were: 
- stronger ties between agents are associated with generation of new ideas and 

adoption of innovation if the relevant knowledge flows between R&D to users of 
innovation;  

- knowledge is “lost” if there is no good soil to seed it (at least moderate strength of 
interactions and resources to develop/implement the innovation); 

- imbalanced number/proportion of the three types of agents may hinder the realisation 
of new ideas; when extreme condition tested – type of actor missing – this led to 
disfunctionalities in the network. 

Docking – comparing the results of the two 
different modelling approaches (Axtell et al., 
1996; Wilensky and Rand, 2007; Purchase et 
al., 2008).  
 

Over 1,000 runs for the FL model and over 5,000 runs for ABM  
The models ensured distributional equivalence, but they were not identical, as it is 
impossible to get numerical identity given the two distinctly different simulation 
mechanisms used. Both models used the same parameters, so we believe that the 
differences in results arose only from relaxing the restrictive assumptions in the FL or 
ABM models. Fuzziness was not possible in the ABM, while emergence and extended 
time periods were not possible in the fuzzy logic model. The stochastic ABM generated a 
distribution of outcomes caused by random encounters among agents, while FL generated 
an ensemble of crisp values as result of multiple rules of interaction applied 
simultaneously.  
Both simulation models produced three clusters: steady, awesome (increased resources I > 
0), and vulnerable (declined resources I < 0) (Figure 3). Cluster profiles were similar in the 
two data sets (Figure 4). The statistical results indicate a high level of equivalence. 

 

 

Figure 3. Clusters of agents based on their resources 

The "awesome" cluster includes 
actors with higher level of relevant 
knowledge resources, with stronger 
ties/collaborations with other actors, 
thus a more privileged position in the 
network. The "vulnerable" cluster 
comprises actors with low level of 
knowledge resources and weak ties, 
whereas the "steady" cluster has a 
mix structure in both models. 
 

MANOVA analysis was performed 
to compare the clusters and we found 
that clusters were associated with 
statistically different measures of 
resources, relations, and change 
(multivariate and between subject 
tests p<0.001), but the type of model 
did not have a statistically significant 
effect on the results (p=0.069). 

        
Figure 4. Profile of clusters of agents in the two models 
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5. CONCLUSIONS 

Our docking exercise sheds light on the relations driving innovation in business networks and generates 
synthetic data under a variety of conditions to represent possible situations in the real world innovation 
networks. This is because ABM and FL models enable more realistic representations of complex dynamic 
systems. The models explore the relationships between agent behaviour and the emergent behaviour of the 
innovation network using flexible structures. In the same spirit as most ABM applications, we were more 
concerned with the theoretical development and explanation of phenomena than with prediction, therefore the 
lack of real data was not considered a hurdle for developing the models. FL and ABM models were 
incrementally and transparently developed, with ad-hoc adjustments arisen from theoretical base and discussions 
with peers, in order to arrive at a better representation of the innovation network, to understand the factors and 
assumptions. The models produced similar results. However, one successful cross-validation does not justify the 
model acceptance and we will further improve the models, especially considering some inherent docking 
difficulties: the ambiguity and uncertainty built into the FL model was not possible in the ABM. The 
experimental generation of values in the FL used linguistic variables (low, medium and high) with membership 
functions, while the ABM required probability distributions for each of the variables. Another difficulty is that 
the FL model only gave results at the network level while the ABM at the individual level.  

Through replication, we gained confidence in the algorithms and implementation and the results are plausible. 
Within their domain of applicability, the models have a satisfactory range of accuracy and support our 
hypotheses on innovation creation and the stance that the empirical validation should not be the primary basis 
for accepting or rejecting a model. 
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