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Abstract: Premixed combustion waves in models with various reaction mechanisms have drawn the 
attention of researchers for a long period of time. Such models are typically described by parabolic reaction-
diffusion systems of partial differential equations relating to energy conservation and the conservation of the 
chemical species involved in the various steps of the combustion reaction. Reaction-diffusion systems 
corresponding to combustion are distinguished by the strong nonlinear dependence of the reaction rates on 
temperature, which are often modelled by the Arrhenius law or some large-exponent power law.  

Advances in computational power have allowed detailed numerical study of reaction mechanisms involving a 
variety of different steps. While these investigations have been useful in providing some quantitative 
predictions for observed phenomena, there is still uncertainty about the reliability of these complex models 
when applied to the prediction of the generic behaviour of flames. To avoid this uncertainty considerable 
effort has been put into the study of reduced reaction mechanisms that involve only one or two steps. One-
step models have the advantage of being relatively simple, allowing analytical investigations into phenomena 
such as ignition and extinction of flames, which have been proved useful and qualitatively correct. However, 
in many reactions models assuming one-step reaction mechanisms can lead to misleading results. The logical 
next step is to consider two-step reaction mechanisms that have shown promise in capturing the essential 
behaviour of more complicated reaction schemes.  

In this paper we discuss the generic properties of travelling combustion wave solutions to models involving 
one- and two-step reaction mechanisms assuming Arrhenius kinetics. In particular, for one-step models we 
discuss the dependence of the speed of the propagating flame front on the activation energy, Lewis number 
and the effects of heat loss, all of which can be controlled in a laboratory setting. In addition we present a 
summary discussion on the stability properties of one-step combustion waves. Stability of combustion waves 
is an important issue in applications such as self-propagating high-temperature synthesis (SHS) of advanced 
materials, where pulsating instabilities in combustion waves can lead to undesirable laminar irregularities in 
the product material. Understanding the dependence of flame speed and stability on the various prescribable 
parameters is therefore a subject of considerable practical interest. 

The generic properties of solutions of the one-step adiabatic and nonadiabatic models are compared to those 
of an adiabatic model assuming a two-step chain branching and recombination mechanism. For the two-step 
reaction scheme it is found that the fuel Lewis number has a considerable effect on the qualitative 
dependence of the wave speed on the activation energy, while the Lewis number for radicals does not greatly 
alter the generic behaviour. In particular, when the fuel Lewis number is less than unity, travelling 
combustion wave solutions are stable and propagate with a speed uniquely defined by a monotonically 
decreasing function of the activation energy. Solutions exist for all values of the activation energy up to a 
finite value corresponding to a wave speed of zero (extinction). On the other hand, when the fuel Lewis 
number is greater than unity the wave speed is double-valued, with unstable ‘slow’ solutions and ‘fast 
solutions that are either stable or that become unstable due to the onset of pulsations. 
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1. INTRODUCTION 

Understanding combustion is important for a variety of applications including industrial processes, 
environmental problems such as bushfires, and the synthesis of advanced materials. As a consequence, 
models that simulate combustion processes have been studied by researchers over a long period of time 
(Merzhanov and Rumanov, 1999). Of particular importance is the manner in which flames will propagate 
through a particular mixture. As such, there has been considerable interest in reaction-diffusion systems that 
admit travelling wave solutions, which in the context of combustion, are called combustion waves. A 
combustion wave describes a propagating flame front, which marks the transition from the initial mixture to 
the reactant product equilibrium phase. Reaction-diffusion systems describing combustion processes are 
distinguished by the extremely strong nonlinear dependence of the reaction rate on temperature, usually 
described by the Arrhenius law. The strong nonlinear nature of combustion models complicates their 
analysis; investigations typically rely on asymptotic methods or advanced numerical techniques as analytical 
solutions are rarely available. 

Basic models used to describe combustion processes often assume one-step chemistry, where fuel (F) and 
oxidant (O2) combine to produce products (P) and heat through the generic kinetic scheme F + O2 → P + 
heat. One-step models have the advantage of being amenable to analytical investigation through asymptotic 
methods, and have led to useful and qualitatively correct predictions of ignition, extinction and stability of 
diffusion flames and the propagation and stability of premixed flames, etc. (Merzhanov and Rumanov, 1999).   

In the majority of cases, however, the chemical reactions in a flame front proceed according to a complicated 
mechanism involving a series of reaction steps, each with its own set of intermediate chemical species. Thus 
in many cases erroneous results can be produced by models that assume one-step chemistry (Westbrook and 
Dryer, 1981).  In an effort to improve predictions of generic flame behaviour, without having to include all 
the effects of detailed multi-step kinetics, researchers have considered reduced kinetic mechanisms. These 
models are more amenable to analytical investigation than the detailed schemes and are still able to provide 
accurate predictions of the main flame characteristics for some reactions. An example of a reduced kinetic 
mechanism is the two-step scheme that involves autocatalytic chain branching A + B → 2B and 
recombination B + M → C + M + heat, where A is the fuel, B is the radical, C the product and M a third 
species. In this scheme the recombination phase acts as both an inhibitor, which terminates the chain 
branching, and an accelerant that produces heat. 

In this paper we report on investigations into the properties of combustion wave solutions to the model 
involving the two-step chain-branching reaction mechanism. Combustion models with chain-branching 
mechanisms usually involve the radical recombination reaction of second-order and higher (Zel’dovich et al., 
1985). In this paper we study a model with the first-order recombination reaction introduced by Dold (2007), 
making comparisons with known results for one-step adiabatic and nonadiabatic models. In particular we 
discuss the dependence of the combustion wave speed on the various prescribable parameters, and compare 
the generic behaviour for the one- and two-step reaction mechanisms. In section 2 we outline the reaction-
diffusion systems used to model flame propagation, in section 3 we discuss the travelling wave formulation 
of the systems, the solutions of which are discussed in section 4. In section 5 we give a brief account of some 
of the stability properties of combustion wave solutions 

2. COMBUSTION WAVE PROPAGATION MODELS 

In this section we briefly introduce the reaction-diffusion systems of partial differential equations used to 
model flame propagation with one- and two-step reaction mechanisms. The results pertaining to models with 
one-step reaction mechanisms are not new. However, due to the limited format, we are not able to give a 
comprehensive overview of the literature. Instead we refer the reader to the list of references, the papers cited 
within them and other sources. 

2.1. One-step model 

(a) Adiabatic case: We consider flame propagation through a premixed fuel in one spatial dimension with 
combustion described by the one-step kinetic scheme F + O2 → P + heat. Assuming that no heat is lost to the 
surrounding media and that the rate of the exothermic combustion is given by the Arrhenius law, the 
equations describing conservation of energy and mass lead to the following parabolic system of reaction-
diffusion equations (Weber et al., 1997): 

u
xxt

u
xxt evvvevuu /1/1 , −− −=+= βτ                                                         (1) 
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The system is written in non-dimensional form. The quantities u and v are the non-dimensional temperature 
and concentration of fuel, respectively, τ is the inverse of the Lewis number (ratio of diffusion rates of mass 
and heat) and β is the ratio of activation energy to heat release. The variables t and x are non-dimensional 
time and space coordinates. 

We consider (1) subject to the boundary conditions 

.as1),(,),(

,as0),(,),( 1

+∞→==
−∞→=+= −

xtxvutxu

xtxvutxu

a

a β                                              (2) 

On the right boundary (x → +∞) we have a cold (u = ua) and unburned (v = 1) state, whereas on the left 
boundary (x → – ∞) we have a hot (u = ua + β-1) and burned (v = 0) state. We denote the (dimensionless) 
ambient temperature by ua. Typically ua will be small compared to the reaction temperature and in many 
treatments it is assumed that ua = 0 (e.g. Weber et al., 1997). This assumption does not change the qualitative 
behaviour of the combustion wave solutions and circumvents the so-called ‘cold boundary problem’ that 
arises when using the Arrhenius law to describe the reaction rates. The ‘hot’ boundary condition u = ua + β-1 
arises from an integral relation for the travelling wave solution (see section 3).  

(b) Nonadiabatic case: The adiabatic scheme described above is of restricted validity in real world 
applications, where consideration of the effects of heat loss to the surrounding media is essential. Assuming 
that heat is lost to the surroundings through Newtonian cooling, the equations (1) are amended as follows 
(Weber et al., 1997): 

u
xxta

u
xxt evvvuulevuu /1/1 ),( −− −=−−+= βτ                                            (3) 

where now l is the heat loss coefficient. The heat loss term refers to heat fluxes orthogonal to the spatial 
dimension denoted by x, e.g. if the one-dimensional model is taken to describe flame propagation along a 
cylinder of infinite length (with a priori averaging over the radial dimension) the heat loss term refers to 
radial heat loss. In order for solutions to exist, l must be sufficiently small. 

We consider (3) subject to the boundary conditions 

.as1),(,),(

,as),(,),(

+∞→==
−∞→==

xtxvutxu

xtxvutxu

a

a σ                                                  (4) 

The conditions on the right boundary (x → +∞) correspond to ambient temperature (u = ua) and unburned 
fuel (v = 1), while on the left boundary (x → – ∞) the inclusion of heat loss means that temperature will 
return to the ambient value (u = ua) and that there will be a residual amount of fuel (v = σ) left behind the 
propagating flame front.  

2.2. Two-step model 

We consider an adiabatic model for premixed flame propagation in one spatial dimension with combustion 
described by the two-step kinetic scheme involving autocatalytic chain branching A + B → 2B and 
recombination B + M → C + M + heat. The energy and mass conservation equations governing this process 
can be written in non-dimensional form as (Gubernov et al., 2008) 

wrewvwwewvvvwruu u
xxBt

u
xxAtxxt βββ ττ −+=−=+= −− /1/1 ,,                          (5) 

where u, v and w are the non-dimensional temperature, concentration of fuel (A) and concentration of radicals 
(B), respectively; x and t are dimensionless space and time coordinates, τA and τB are the inverse of the Lewis 
numbers for fuel and radicals, β is the ratio of activation energy to heat release and r is the ratio of the 
reaction constants for recombination and chain branching.  

The equations (5) are considered subject to the boundary conditions 

.as0),(,0),(,0),(

,as0),(,1),(,),(

−∞→===
+∞→===

xtxwtxvtxu

xtxwtxvutxu

xx

a                                           (6) 

On the right boundary (x → +∞) we have a cold (u = ua) and unburned (v = 1) state where fuel has not yet 
been consumed and no radicals have been produced (w = 0). On the left boundary (x → – ∞) neither the 
temperature of the mixture nor the concentration of the fuel can be specified, but requiring that no reaction is 
taking place implies that u and v are constant and that w = 0. 
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3. TRAVELLING WAVE SOLUTIONS 

3.1. One-step model 

(a) Adiabatic case: To obtain travelling wave solutions of the system (1) we introduce the ansatz 

)(),(),(),( ξξ vtxvutxu ==                                                              (7) 

where ξ = x – ct is a coordinate frame that moves with constant speed c. Substitution of (7) into (1) reduces 
the reaction-diffusion system (1) to a system of ordinary differential equations 

0,0 /1/1 =−+=++ −− uu evcvvevcuu βξξξξξξ τ                                              (8) 

with boundary conditions  
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a                                                      (9) 

Adding the second equation in (8) to the first multiplied by β and integrating from – ∞ to +∞ yields the 
condition u = ua + β-1. Thus, without heat loss, the temperature on the ‘hot’ boundary is the maximum 
temperature achieved by the flame. 

(b) Nonadiabatic case: Similarly for the nonadiabatic case, substitution of (7) into (3) results in the system of 
ordinary differential equations 

0),( /1/1 =−+−=++ −− u
a

u evcvvuulevcuu βξξξξξξ τ                                       (10) 

with boundary conditions 
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a                                                         (11) 

Adding the second equation in (10) to the first equation multiplied by β, integrating and imposing the 
boundary conditions (11) yields c(1 – σ) = βlu*, where u* denotes the integral of u from ξ = −∞ to ξ = +∞. 
The residual amount of fuel σ is therefore a function of the mean temperature, the prescribed parameters β 
and l, and the internal wave speed parameter c. 

3.2. Two-step model 

Imposing the ansatz u(x, t) = u(ξ ), v(x, t) = v(ξ ) and w(x, t) = w(ξ ), where ξ = x – ct is a coordinate in the 
moving frame and c is the speed of the travelling wave, the reaction-diffusion system (5, 6) reduces to the 
system of ordinary differential equations 

,0/1/1 ,0,0 =−++=−+=++ −− wrewvcwwewvcvvwrcuu u
B

u
A βββ ξξξξξξξξξ ττ            (12) 

subject to the boundary conditions 

.as0,1,0
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−∞→===
+∞→===

ξ
ξ

ξξ wvu

wvuu a                                                  (13) 

The boundary conditions (13) can be modified by multiplying the first equation in (12) by β, and adding the 
second and third equations. Integrating the resultant sum from ξ = −∞ to ξ = +∞ and using (13) yields the 
following condition 

( ) .lim1limor,0 vudwvu
−∞→−∞→

∞

∞−

−==++ ξξξ ββ ξ  

Hence the boundary conditions (13) may be modified as  

.as0,),1(

,as0,1,
1 −∞→==−=

+∞→===
− ξ

ξ
σσβ wvu

wvuu a                                             (14) 

where σ denotes the residual amount of fuel left behind the propagating flame, which is a function of the 
prescribed parameters τA, τB, β and r.  
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4. PROPERTIES OF TRAVELLING COMBUSTION WAVES 

Combustion wave solutions to the systems (8, 9), (10, 11) and (12, 14) are determined numerically using 
shooting and relaxation methods. The shooting methods employ fourth-order and fifth-order Runge-Kutta 
algorithms to obtain approximate solutions of the single-step and two-step systems, respectively, over the 
interval [-L1, L2], where L1, L2 >0 are sufficiently large. The approximate solutions are then refined using 
relaxation methods, which deliver solutions with an associated error less than 10-15. See Gubernov et al. 
(2003) for more details and references. 

The numerical methods described above allow properties of the combustion waves, such as their speed, to be 
determined. For the single-step systems, the dependence of the speed c of the flame front on the prescribed 
parameters {τ, β} and {τ, β, l} is obtained, while for the two-step system the speed of the flame front depends 
on the prescribed parameters {τA, τB, β, r}. 

4.1. One-step model 

The shooting and relaxation methods were used to obtain values of the speed of the combustion wave for a 
variety of values of the prescribed parameters {τ, β} and {τ, β, l}. The speed of the flame front exhibits 
fundamentally different behaviour for the adiabatic and nonadiabatic cases.  

(a) Adiabatic case: In the adiabatic model the speed of the combustion wave corresponds to the surface c(β, 
τ). Plots of the wave speed as a function of the activation energy β and for a number of different values of τ 
can be seen in figure 1a. The speed c decreases monotonically with β in all cases. For large values of β the 
speed decays according to τβc2 ~ 2e-β. Typical profiles of temperature and fuel are also shown in the inset 
panel of figure 1a. 

(b) Nonadiabatic case: For the nonadiabatic model the speed of the combustion wave depends on the three 
parameters β, τ and l. Several cross-sections of the wave speed c(β, τ, l), taken parallel to the β-axis for τ = 0.5 
and a number of different values of l can be seen in figure 1b. In contrast to the adiabatic case the wave speed 
in the nonadiabatic case is double-valued with respect to β. That is, for each value of β the solution possesses 
a ‘fast’ and ‘slow’ branch. The ‘slow’ branches correspond to the bottom part of the curves in figure 1b, 
while the ‘fast’ branches correspond to the top part. Both solution branches exhibit monotonic behaviour with 
respect to β (for constant τ and l) and l (for constant β and τ). Also in contrast to the adiabatic case there is a 
distinct value of β beyond which no travelling wave solutions exist (the turning point on the curves in figure 
1b). This is referred to as the extinction point. The value of β corresponding to extinction is denoted βe. Thus 
there are two propagating fronts for β < βe and no solutions for β > βe. Similarly there is a critical value of the 
heat loss parameter corresponding to extinction; if l is below this critical value two solutions exist, while if l 
is above the critical value there are no solutions. Typical profiles of temperature and fuel for the nonadiabatic 
case are shown in the inset panel of figure 1b. 
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Figure 1. (a) Wave speed c as a function of β for the single step adiabatic model with different values of 
the parameter τ = 0.1, 0.5, 1.0. The inset shows the temperature βu (red solid) and fuel v (black dashed) 
profiles for β = 3 and τ = 1.0 with c = 0.13 (b) Wave speed c as a function of β for the single step 
nonadiabatic model with τ = 0.5 and four different values of l = 1×10-5, 5×10-5, 1×10-4, 5×10-4. The inset 
shows the temperature βu (red solid) and fuel v (black dashed) profiles for β = 3, τ = 0.5 and l = 5×10-4, 
with c = 0.14. 
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4.2. Two-step model 

The behaviour of the adiabatic model assuming a two-step reaction mechanism differs substantially from that 
assuming single-step chemistry. In particular, for the two-step model there exists a critical value β = βe 
beyond which the solution ceases to exist. This is in contrast to the adiabatic model with single-step reaction 
mechanism for which solutions existed for all values of β.  

The Lewis number for the fuel (τA
-1) has a 

significant effect on the wave speed profile, 
whereas variation of  the Lewis number for the 
radicals (τB

-1) produces some quantitative 
differences but does not affect the overall 
behaviour of the solutions. In the case τA > 1, the 
wave speed decays monotonically with β, and 
approaches zero as c ~ (β – βe)

2, while for τA = 1, 
the speed c is still a monotonically decreasing 
function of β, but now approaches zero in a 
linear fashion. The dependence of flame speed c 
on β changes significantly when τA < 1. In this 
case c(β) becomes double-valued: there are 
either two solutions with different flame speeds 
or the solutions cease to exist due to extinction 
above some threshold value βe where the fast 
and slow solution branches meet. The 
dependence of the flame speed on β for various 
values of the parameters τA, τB with r = 0.001 can 
be seen in figure 2. 

5. STABILITY OF TRAVELLING WAVE SOLUTIONS AND PULSATING WAVES 

5.1. One-step model 

(a) Adiabatic case: The travelling wave solutions are either stable or exhibit pulsating instabilities as β 
reaches a critical value βh < βe, corresponding to a Hopf bifurcation. For τ-1 >> 1 the value of βh tends to a 
finite limit value, whereas if τ→1, then βh→∞. 

(b) Nonadiabatic case: The ‘slow’ solution branch is always unstable due to uniform instability. The ‘fast’ 
solution branch is either stable or 
exhibits pulsating instability due to the 
Hopf bifurcation. There is a critical value 
τBT (corresponding to a Bogdanov-
Takens bifurcation) such that for τ > τBT 
the ‘fast’ branch is stable for all β up to β 
= βe (turning point); for τ < τBT the 
solution is stable for β < βh and unstable 
for β > βh. βh originates from the 
extinction locus at τ = τBT and approaches 
a finite asymptotic value as τ-1→∞. 

5.2. Two-step model 

We investigate the stability of the 
travelling wave solutions using the Evans 
function (Gubernov et al., 2003) and 
direct integration of the partial 
differential equations using finite 
difference methods. Travelling wave 
solutions exist above the extinction curve 
in figure 4. The ‘slow’ solution branch, 
which exists for τA < 1, is always 
unstable, while the ‘fast’ branch (τA > 1) 
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Figure 2. Wave speed c as a function of β for the two-
step adiabatic model for r = 0.001 and various values of 
the parameters τA and τB. 

   

Figure 3. (a) Temperature u, (b) concentration of fuel v, (c) 
concentration of radicals w as functions of the moving 
coordinate ξ for the pulsating combustion wave with τA

-1 =3, τB
-

1 =1 and β = 4.08 (βh ≈ 4.0703). Solution profiles are sampled 
at t1 = 0, t2 = 8750 and t3 = 17500 and are marked as 1, 2 and 3, 
respectively. Panel (d) shows values of the maximum value of 
w plotted against the location of the maximum value of w. 
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is either stable or exhibits pulsating 
instabilities due to the Hopf bifurcation 
once the Hopf locus is crossed. An 
example of a pulsating solution can be 
seen in figure 3. The sections of the c(β) 
profile corresponding to unstable solutions 
are represented by dotted lines in figure 2. 
The Bogdanov-Takens bifurcation is now 
anchored at τA = 1, therefore in contrast to 
the one-step nonadiabatic case, the 
pulsating instability exists for all τA < 1. 
For τA > 1 (for which c(β) is monotonic) 
the solutions are stable over the whole 
range of existence. These results are 
summarised in the bifurcation diagram, 
figure 4. 

6. DISCUSSION AND 
CONCLUSIONS 

The generic features of one-dimensional one-step adiabatic and nonadiabatic premixed combustion wave 
solutions were summarised and compared with the results of investigations into a one-dimensional adiabatic 
model with a two-step chain branching reaction mechanism. In the two-step model the parameter τA had a 
substantial effect on the qualitative properties of combustion waves, while τB had only a quantitative effect. 

For τA > 1 the travelling wave was stable with the speed defined as a monotonically decreasing function of β. 
Solutions were found to exist for values of β up to a finite value βe, corresponding to extinction. The speed 
approached zero as β approached βe. For τA < 1, on the other hand, c(β) was double-valued, with the 
travelling wave solution exhibiting extinction for finite values of β, in contrast to the one-step adiabatic case. 
Extinction in the two-step τA < 1 case also corresponds to c ≠ 0 due to a turning point bifurcation, in contrast 
to the τA > 1 case. The ‘slow’ solution branch was always unstable, while the 'fast' solution branch could be 
either stable or could lose stability with respect to pulsating instabilities due to a Hopf bifurcation. For τA →1 
the Hopf and extinction loci coincide due to the Bogdanov-Takens bifurcation. In these types of models it 
appears that the Bogdanov-Takens bifurcation point is the key to predicting instabilities. 
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