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Abstract:  Bioavailability is the rate and extent to which the active ingredient or active moiety is absorbed from 
a drug product and becomes available at the site of action. For drug products that are not intended to be absorbed 
into the bloodstream, bioavailability may be assessed by measurements intended to reflect the rate and extent to 
which the active ingredient or active moiety becomes available at the site of action. Bioequivalence according to 
regulatory requirements is the absence of a significant difference in the rate and extent to which the active 
ingredient or active moiety in pharmaceutical equivalents or pharmaceutical alternatives becomes available at the 
site of drug action when administered at the same molar dose under similar conditions in an appropriately 
designed study. The study is basically a crossover comparison of absorption of two compounds to determine the 
maximum absorption (Cmax) and the area under the curve (AUC) of the two compounds and determining if their 
mean difference falls into a specified confidence region of bioequivalence. 

Typically, generic drug formulations are often prescribed for ‘brand name’ (i.e.standard) formulations and given 
by pharmacists in an effort to reduce the cost of prescription-drug therapy. In most regions, generic replacement 
is allowed and encouraged, provided that the generic formulation is deemed to be therapeutically equivalent to 
the standard formulation by the United States Food and Drug Administration (FDA). The FDA publishes a list of 
drug products and equivalents, which is entitled, Approved Drug Products with Therapeutic Equivalence 
Evaluations. This is commonly known as the Orange Book. The FDA’s designation of ‘therapeutic equivalence’ 
indicates that the generic formulation is (among other things) bioequivalent to the standard formulation and 
usually indicates that the FDA expects that the formulations are likely to have equivalent clinical effect and, in 
addition, have no difference in their potential for adverse effects. The 1984 Amendments to the Drug Price 
Competition and Patent Term Restoration Act require that manufacturers seeking approval of generic 
formulations submit to the FDA data demonstrating bioequivalence to the reference or standard drug product 

One of the primary considerations for bioequivalence is the drug’s amount and rate of drug absorption and 
eventually expulsion. The approach taken in this paper is to model this system of absorption via a Bayesian 
technique taking into account the overall mean treatment and crossover period effects as well as the sequence in 
which the compounds are given to an individual in a properly designed trial. For each of the parameters of 
interest we will determine if those values across the two compounds satisfy the boundaries of an acceptable 
posterior credible region.  Typically the Cmax and the AUC are treated independently in the analysis.  For most 
applications to date this has been considered the standard strategy. As an added consideration, we will examine 
the consequences of a possible correlation between the Cmax and the AUC. In a typical crossover design, 
subjects are randomly separated into two groups of equal numbers. In the time period 1 the reference formulation 
is given to group A and the test to group B. During the ‘washout period’ it is assumed that there is sufficient time 
duration to allow elimination of the drug administered in the first period. Then in the time period 2 the reference 
formulation is given to group B and the test to group A. The crossover design allows one to statistically account 
for “period or sequence effects”. We will examine all the variables of interest using prior input empirical results 
from previous work.   The model being investigated is a multivariate model with prior structural considerations 
on the correlation parameter in an attempt to properly account for the posterior correlation of the parameters of 
interest, usually the posterior mean of the AUC and the Cmax. Advantages and limitations of our approach will 
be discussed.  
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1.     INTRODUCTION  

The issue of bioequivalence testing continues to be of great interest to the pharmaceutical and biotechnology 
industry. This is especially evident since the marketed products having the same amounts of the drug may exhibit 
marked differences in their therapeutic responses (Westlake, 1981).  Ghosh and Rosner (2007) give an excellent 
summary of the history of bioequivalence which we outline here. These authors as well as others have noted that on 
the basis of simple pharmacokinetic concepts and parameters, bioavailability and bioequivalence studies have been 
established as acceptable surrogates for expensive, complicated and lengthy clinical trials. These trials are used 
worldwide to establish and confirm consistent product quality, as well as reliable and therapeutically effective 
performance of marketed dosage formulation.  It has been established by Chow and Liu (2000) that three situations 
have arisen   in which bioequivalence studies are required. They are:  (i) when the proposed marketed dosage form is 
different from that used in pivotal clinical trials, (ii) when significant changes are made in the manufacture of the 
marketed formulation, and (iii) when a new generic formulation is tested against the standard or reference marketed 
product. A bioequivalence study is an experiment to compare a test product (B) to a reference product (A). 
Bioequivalence studies compare both the rate and extent of absorption of various drug formulations with the 
standard (reference) product on the basis that if two formulations exhibit similar drug concentration-time profiles in 
the blood/plasma, they should exhibit similar therapeutic effects. For a new and not yet approved generic dosage 
formulation to be marketed and accepted as therapeutically effective in relation to the reference product, it must 
have established bioequivalence with the innovator product, in vivo. The determination of bioequivalence is, thus, 
very important in the pharmaceutical industry because regulatory agencies like the U.S. Food and Drug 
Administration (FDA) allow a generic drug to be marketed only if its manufacturer can demonstrate that the generic 
product is bioequivalent to the reference product. According   to FDA regulations (2003), a valid statistical 
evaluation of a bioequivalence trial is essential in order to guarantee the safety and efficacy of the generic drug 
products. Bioequivalence studies usually proceed by administering dosages to subjects and measuring the 
concentration of the drug in the blood just before and at set times after its administration. 
These concentration-by-time measurements result geometrically in a polygonal curve and measurements of the 
drug’s pharmacokinetics, like AUC (area under curve), Cmax (maximum concentration) and Tmax (time to 
maximum concentration) are calculated. For statistical analysis, and as comparative purposes, these measures are 
taken as the response variables. Regulatory guidelines have also suggested the consideration of average 
bioequivalence (ABE) (Berger et. al., 1996).  As pointed out in Ghosh and Rosner (2007), ABE requires equivalence 
between the population means of the pharmacokinetic measurements for the reference and test formulations.  
Recently,, the FDA (2003) supplemented ABE with two more criteria described as , population bioequivalence 
(PBE) and individual bioequivalence (IBE). These new criteria have also been the subject of dispute. Also the PBE 
is sometimes confused as the probability of bioequivalence. This has more relevance in the Bayesian context which 
we shall discuss. Nonetheless, the   ABE still remains the main criterion for assessing bioequivalence between two 
formulations. The main advantage of ABE is its easier interpretation for the intended audiences, including 
regulators, prescribing physicians, pharmacists, and patients. The criterion of ABE has also found potential 
applications in several other areas such as, psychology (Rogers et. al., 1993), chemistry (Roy, 1997), and 
environmental statistics (Manly, 2004). In this paper, we take a Bayesian approach to assessing ABE as well as other 
parameters. The key advantage of using a Bayesian approach for bioequivalence trials is the ability of the Bayesian 
inferential approach to incorporate background or empirical information thought relevant to the clinical question 
being addressed ( Bartolucci et al. 2008). Breslow (1990) presented arguments that bioequivalence is a perfectly 
natural concept to be subjected to Bayesian analysis. Several authors have also advocated a Bayesian approach to 
average bioequivalence inference (Ghosh and Gonen, 2008). The main idea of all the above methods as we also 
demonstrate in our work is to find the posterior distribution of the parameter of interest based on non-informative 
prior distributions for the parameters.  A conjugate setting will also work here. All of the existing literature on ABE, 
however, relies heavily on a normality assumption. The normality assumption in a bioequivalence trial may not 
always be true, however, and the inference can be misleading. Bolton (1991) discussed that the normality 
assumption in a bioequivalence trial may lack robustness against outliers and skewness. Usually a bioequivalence 
trial is conducted with a small number of healthy subjects, and it is not always possible to validate the normality 
assumption. Instead of following a normal distribution, the data from a bioequivalence trial may have a mixture of 
normal distributions (e.g., diverse populations, such as from pharmacogenetic variation), a distribution with heavier 
tails, or some other distribution which can not be easily specified. Thus, it became is of practical interest to develop 
statistical models in ABE that move beyond the traditional parametric model. This was done rather nicely by Ghosh 
and Rosner (2007) as well as Ghosh and Gonen (2008). We do not belabor these arguments here.. Our method 
extends existing methods by allowing for possible heterogeneity of the subjects who are participating in the study by 
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allowing for a random subjects effect. Our next focus is to apply the approach of Ghosh and Gonen (2008) to 
investigate the effect of the correlation structure on the AUC and Cmax. It is often assumed that these two 
parameters are independent. Thus an ABE is attained for each separately under the assumption of independence. We 
investigate various prior structures on the correlation from the beta family of distributions and determine first of all  
the strength of the correlation and then the effect of the correlation on the outcome using a bivariate model for both 
the AUC and the Cmax. The limitations of the approach both statistically and from a software perspective will also 
be presented.  
 
 

2.  METHODS 

The typical study design employed in bioequivalence studies is the two-treatment, two-period, crossover design  In 
this type of  design,subjects are randomly separated into two groups (A and B) of equal number. The reference 
formulation is administered to group ‘A’ in the first study period, and the test formulation is administered to group 
‘B’ in the first period. During the second study period, group ‘A’ receives the test formulation and group ‘B’ 
receives the reference formulation. The first and second study periods are separated by a washout period, which is 
designed to be of sufficient duration to allow elimination of the drug administered in the first period. Subjects are 
separated into two groups to allow identification of ‘period’ or ‘sequence’ effects in the study results. The sequence 
is of course A to B or B to A. Without loss of generality we will refer to A as the reference formulation and to B as 
the test formulation. 
 

As in Ghosh and Gonen (2008) we will consider a 2 × 2 crossover design for multivariate ABE endorsed by the 
FDA (2003).  In most bioequivalence trials, a test formulation is compared with the reference formulation in a group 
of normal, healthy subjects, as recommended by the US FDA (2003). Each participant receives the treatments 
alternatively in a crossover study. The most commonly used statistical design for comparing average bioequivalence 
between a test formulation (B) and a reference formulation (A) of a drug is a two-sequence, two-period, crossover 
design. The following statistical model is usually considered for a 2 × 2 crossover design. Consider, 
 

yijk  = μi, k    + Si  + Pk   + δij  + eijk          (1) 
 

Here, we consider  yijk   to be the logarithm of response in the ith sequence from the kth period for the jth subject, (i 
= 1, 2; j = 1, 2, · · · , ni  ; k = 1, 2). We use the logarithm, as a standard because often the response measures in a 
bioequivalence study follow a lognormal distribution, due to skewness. Furthermore, μi,k   is the direct effect of the 
formulation in the ith sequence that is administered at the kth period, Si  is the fixed effect of the ith sequence (S1 + 
S2 = 0), Pk  is the fixed effect of period k (P1  + P2  = 0). We let eijk  be the within subject random error in observing 
yijk..The  δij  are considered the random subject effect for the ith sequence and kth period. We are assuming they are 
i.i.d. normal with mean 0 and variance σ2 and the eijk   are    i.i.d. with mean 0 and variance  σl

2    where l is the 
treatment indicator. That is to say, l=A if k=i and l=B otherwise. We assume that in the first period of the first 
sequence we have the formulation A then: 
 
    μi, k   =  μA   if k=i and μi, k   =  μB  if k ≠  i.                 (2)    
 
Two compounds or drugs are called average bioequivalent if the population means of the drug-specific AUC’s are  
sufficiently close. We can apply the same to the Cmax.  In statistical terms, the problem of ABE is to decide if the 
difference of two parameters   Δ  = μA  −μB   is close to zero. The usual expression of average bioequivalence is 
presented as: 
 
                                           H0   :   Δ  ≤  θL     or   Δ  ≥ θU    vs. Ha : θL  < Δ   <  θU,      (3)  
 
where the lower and upper tolerance limits  θL  and   θU   are known constants specified by the  sponsor of the trial 
and the FDA. The limits  θL   = log(0.8) and  θU  = log(1.25)  or log(1.2) are widely accepted by drug authorities for 
testing bioequivalence in terms of the parameters of interest.  We note that the hypothesis testing set up in (3) is the 
reverse of the ordinary view of hypothesis testing in the Neyman Pearson context. Whereas a null hypothesis is 
usually a hypothesis of equivalence, we now consider the lack of equivalence the null hypothesis that we seek to 
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disprove. This formulation makes a great deal of sense for bioequivalence trials. Here the type I error is the 
probability of declaring the drugs to be bioequivalent when in fact they are not. Therefore, by setting up the 
hypothesis as in (3), the consumer’s risk (usually associated with the Type I error) is protected. Once the consumer’s 
risk is restricted to, say, a level 5% error, the agency such as the FDA leaves the pharmaceutical industry to 
determine the extent of manufacturer’s risk via the type II error. 
 
There are two additions to the work in the above context. First of all we have to have a prior structure for the 
parameters  δij   , μl  and  σl

2.     Next we have to put our model in a bivariate context to account for the possible 
correlated response of the AUC and the Cmax.  This will in turn give rise to an additional prior structure for some of 
the additional parameters. 
 We assume: 
   δij   ~ N(μ,σ2)  
    
   μl   ~  N(0,σu

2  )        (4) 
    
   σl

2  ~ IG(a,b), 
 
where IG refers to the inverted gamma 1 distribution.  The hyperparameters (σu

2  , a,b) are assumed to be known. We 
now put the  yijk  in a bivariate normal context for the two responses of AUC and Cmax with a mean vector for the 
responses   as well as a variance covariance structure. We then use Markov Chain Monte Carlo procedures to solve 
for the posterior parameters.  If  we let  1 denote the first column vector of AUC response and 2 denote the second 
column vector of Cmax responses, then in order to account for the sequence, i , period, k, and treatment effect for 
each subject,  j  , (i = 1, 2; j = 1, 2, · · · , ni  ; k = 1, 2), we have the model in simplified terms for presentation: 
 
 
 Y[j,1:2] ~  MVN (u[j,1:2], Cov[1:2,1:2])      (5) 
 
where  MVN is multivariate normal, u denotes the  mean vector and Cov denotes the variance covariance structure.  
Thus assuming  a linear relationship between treatment response (AUC and Cmax)  and  the sequence, S, period, P, 
and treatment effect which we denote as alpha, we have for the  jth subject , the  AUC model, 
        

u[j,1] = beta1SEQ  *seq[j,1]+beta1PERIOD  *period[j,2]+alpha1*treat[j,3]+s[g[j],1]   (6) 
 
where s[g[j], ]  denotes the random subject effect.  Likewise for the Cmax response vector we have 
 
              u[j,2] = beta2SEQ  *seq[j,1]+beta2PERIOD *period[j,2]+alpha2*treat[j,3]+s[g[j],2].    (7) 
 
This is from the notation provided by Ghosh and Gonen  (2008). 
 
The priors on the vectors in (5) are : 
 
 u[j,1:2]  ~  Normal (0, 1/tau).   tau=1000,         (8) 
 
 Cov1[1:2,1:2])  ~  Wishart( var=1, Cov=0). 
 
Although the entire program is not presented here, the correlation structure, ρ,  for AUC and Cmax is coded as prior 
beta (including uniform)  and will be presented in the “Results” section. The goal  is to ultimately determine the 
posterior means for the ABE of AUC and Cmax, the sequence, period and treatment effects as well as the posterior 
mean of  the correlation between the two response parameters  AUC and Cmax.,   
 
We consider a bioequivalence example from Balthasar (1999). The data (AUC and Cmax) are presented from a 
simulated cyclosporine bioequivalence study with 12 subjects. Apparently their data were simulated using a one 
compartment model. The author assumed  the following values for pharmacokinetic parameters (mean ± inter 
patient SD): bioavailability 0.3±0.4, absorption rate constant 0.28h-l±0.13, clearance 53.8L/h±21.4, volume of 
distribution 301L±217. Intra patient variances in model parameters were assumed as follows: bioavailability (0.2 x 
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mean value) 2 , absorption rate constant (0.23 x mean value)2  , volume of distribution and clearance (0.1 x mean 
values)2  . Data were simulated for a two-treatment, crossover study of 300mg of cyclosporine administered orally. 
The author performed the simulation assuming the same parameter values and variances for both study periods; 
consequently, there was no ‘true’ difference between the formulations in terms of their rate and extent of absorption. 
However, the simulated results lead to parameter values with moderately high values of intra patient variability in 
AUC (percent coefficient of variation: 19.3 percent) and in Cmax (percent coefficient of variation: 23 percent). 
These intra patient variabilities did agree well (Balthasar, 1999) with the experimental results of Kovarik et 
al.(1994)  in their investigation of intra patient 
variability in cyclosporine pharmacokinetics . 
 
 
3.  RESULTS 

The analysis of the data was done in two stages. We 
first examined the results in Table 1 under the 
assumption of independence of the AUC and the 
Cmax. Vague normal priors were assumed for the 
mean values of the responses, AUC and the Cmax,  
as well as the treatment and period effect. A 
posterior probability was generated for the average 
bioequivalence of the two responses. One can see 
that the posterior mean for the AUC is 7.215 and 
immediately below that result is the treatment and 
period effect on the  bioequivalent response. Both 
the posterior credible regions for these parameters 
contain 0 indicating no effect on the overall result. 
The value of P(ABE) indicates that the posterior 
probability of average bioequivalence is about 0.638 
which suggests pretty strong evidence for ABE. The 
results for Cmax are in the lower half of the table. 
One can see no strong treatment or period effect on 
the ABE for either the treatment or period in the 
design, the probability of ABE is around 0.558. In 
both cases of the P(ABE) the posterior credible 
regions default to (0.0, 1.0) using the Markov Chain 
Monte Carlo simulation results. One can see from 
Figure 1 there are clearly no effects of treatment on 
the ABE results for the AUC(Top)  or the Cmax 
(Bottom). The “10000” noted in each plot indicates a 
10,000 burn simulation for the MCMC results. The 
solution was actually attained with a more rapid 
convergence.. However we used the 10,000 as a 
standard. Thus the zero correlation results clearly 
supported the conclusion of bioequivalence.  
However, , the correlation  between the two 
parameters of interest was quite high at about 0.869, 
which indicates that perhaps one should consider a 
bivariate relationship between the Cmax and AUC 
and determine if the evidence of ABE is still 
substantiated. We now invoke equations (5) to (8)  
above applying our multivariate approach to this 
issue.  Tables 2 and 3 give the results for both a prior 
uniform (0,1) and prior Beta (1,2) distribution on the 
prior correlation structure for the AUC and the 
Cmax. One can see from Table 2 for uniform (0,1) 

Table 1 Posterior Results for Correlation=0 

Parameter     Mean 

 

SD Lower 

2.5% 

Upper 

97.5% 

AUC 7.215 0.277 6.672 7.758 

Treatment -0.022 0.243 -0.517 0.468 

Period -0.043 0.241 -0.529 0.435 

P(ABE) 0.638 0.4805 0.0 1.0 

Cmax 4.72 0.256 4.22 5.231 

Treatment 0.072 0.263 -0.461 0.539 

Period 0.066 0.260 -0.588 0.453 

P(ABE) 0.558 0.497 0.0 1.0 

 
  
 

treat sample: 10000

   -2.0    -1.0     0.0     1.0

    0.0
    0.5
    1.0
    1.5
    2.0

 
    
 
 

treat sample: 10000

   -2.0    -1.0     0.0     1.0

    0.0
    0.5
    1.0
    1.5
    2.0

 
Figure 1.  Posterior Densities of treatment 
effect on the  ABE (AUC, Top) and  ABE 
(Cmax, Bottom). 
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that we have rows for the sequence effect as well as the posterior correlation, ρ, and the joint probability of  
bioequivalence  P(ABT). One can also see that the posterior correlation here is about 0.572 and the joint P(ABT) is 
about 0.212. The joint P(ABT) from Table 1 under the assumption of independence of the AUC and Cmax is about 
0.356. Also unlike Table 1 there seems to be a period effect for the AUC in Table 2. Also the posterior mean (sd) 

difference from period 1 to period 2 in the AUC is -0.09393 (0.44) and the posterior difference for the Cmax is  -
0.1418(0.36). 

 One can see from Table 3 for the Beta (1,2)  prior on  ρ  that we have a sequence effect but no period effect for 
AUC as in Table 2. Also the posterior correlation, ρ, is less than in Table 2. The joint P(ABT) is relatively 
unchanged from Table 2. Also the posterior mean (sd) difference from period 1 to period 2 in the AUC is -0.1108 
(0.45) and the posterior difference for the Cmax is  -0.1599(0.43).As we attempted to increase the prior Beta scale 
and the shape parameters for the correlation structure our MCMC program became unstable in the sense that the 
results were non robust outside the ranges we attempted which probably is an indication that Tables 1,2 and 3 are 
constructed for a realistic range for the correlation hyper parameters. The overall result clearly shows that one must 
take into account the correlation of these two parameters, AUC and Cmax when reporting bioequivalent results. The 
P(ABE) and P(ABT) are certainly sensitive to this consideration. 

 

 

 

Table 2  Bivariate  Posterior Results for  prior uniform 
(0,1) distribution the Correlation. 

Parameter      Mean 

 

SD Lower 

2.5% 

Upper 

97.5% 

 AUC 6.756 0.3961 5.968 7.546 

Treatment -0.047 0.219 -0.478 0.409 

Period 1.136 0.464 0.225 2.077 

Sequence 0.899 0.555 -0.145 2.035 

P(ABE) 0.405 0.491 0.0 1.0 

Cmax 4.135 0.336 3.468 4.798 

Treatment -0.071 0.182 -0.432 0.295 

Period 0.077 0.186 -0.282 0.453 

Sequence -0.018 0.215 -0.437 0.422 

P(ABE) 0.444 0.497 0.0 1.0 

P(ABT) 0.212 0.409 0.0 1.0 

ρ 0.572 0.299 0.032 0.986 

Table 3  Bivariate Posterior Results for  prior 
Beta(1,2) distribution on the Correlation. 

Parameter      Mean 

 

SD Lower 

2.5% 

Upper 

97.5% 

AUC 6.740 0.510 5.954 7.525 

Treatment -0.055 0.219 -0.480 0.381 

Period 0.950 0.542 -0.039 1.987 

Sequence 1.175 0.506 0.274 2.060 

P(ABE) 0.402 0.490 0.0 1.0 

Cmax 4.158 0.562 3.460 4.843 

Treatment -0.079 0.217 -0.450 0.288 

Period 0.043 0.436 -0.316 0.428 

Sequence -0.023 0.365 -0.469 0.404 

P(ABE) 0.441 0.497 0.0 1.0 

P(ABT) 0.210 0.408 0.0 1.0 

ρ 0.368 0.252 0.014 0.888 
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4.  DISCUSSION AND CONCLUSIONS 

There certainly has been sufficient discussion (Ghosh and Gonen, 2008) about the mathematical caution that one 
should take before attempting to present bioequivalent results under the assumption of the independence of the 
parameters of interest such as the AUC, Cmax,  Tmax or others. The attempt here computationally was twofold. 
First of all we wanted to apply this concern to a data set of interest and secondly we wished to examine the behavior 
of the MCMC approach to the problem. In the case of assumed correlation of 0 we naturally were able to generate 
with relative ease the results of Table 1 giving the posterior estimates of the parameters of interest as well as the 
P(ABE) for each. The MCMC procedure was stable and yielded results that were in line with the original author’s 
presentation  (Balthasar,1999) from a non Bayesian perspective and under the assumption of independence of the 
AUC and Cmax. Next we utilized the MCMC approach of Ghosh and Rosner (2007) and Ghosh and Gonen (2008) 
keeping within the framework of the bivariate consideration of the parameters. That particular program was a 
challenge in that the input format was not clearly outlined in their work. Nonetheless the script as presented for the 
ensuing results discussed in our work here was very well done and once one gets beyond the input  challenge for a 
crossover design the data as reported was certainly sensible. One can see that taking into account prior correlation 
does impact on the overall P(ABE) as well as the P(ABT). The results were consistent and robust with respect to the 
prior non informative input of most of the parameters in that the treatment effect was negligible across the periods of 
the experiment. However, one has to exercise caution when one inputs the prior structure for the correlation because 
the convergence to a solution requires much more burn iterations if one is not within a realistic range of the prior 
correlation. This was obvious when conducting this analysis as one can converge to a solution fairly quickly within 
no more that 5000 to 10,000 iterations for realistic priors on the correlation such as the  uniform (0,1) and beta scale 
1 and shape no greater than 2. Of course one should always conduct sensitivity analyses when doing this type of 
analysis. 
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