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Abstract: Forming a major part of any infrastructure, roads are vital in the interplay between the social 
and economic livelihood of a municipality. The distribution of goods and services is mostly carried out by 
road. Businesses are provided with the opportunity to expand trading whilst opening up competition. 
However, when road conditions are directly or indirectly affected by both the physical and natural 
environment, the likelihood of crashes are inevitable. While there are numerous studies that have investigated 
these causal factors, only a few have looked into the comparison of single- and multiple-vehicle crashes 
(SVCs and MVCs) relative to spatial, temporal and spatio-temporal distribution. 

This paper applied spatial, temporal and spatio-temporal techniques to investigate patterns of SVCs and 
MVCs in Western Australia between 1999 to 2008 at different scales. Spider graphs were adapted to identify 
temporal patterns of vehicle crashes at two different scales: hourly and weekly. The spatial structures of 
vehicle crashes were analysed using Kernel Density Estimation (KDE) analysis at three different scales: 
Western Australia, Perth metropolitan area, and Perth Local Government Area (LGA). These are illustrated 
using spatial zooming theory. Comap was then used to demonstrate the spatio-temporal interaction effect on 
vehicle crashes.  

The results show significant differences in spatio-temporal patterns of SVCs for various crash causes. 
Furthermore: 

• The proportion of SVCs in the Perth LGA compared with MVCs in the same region is not very 
significant, possibly because of the high density of vehicles in the Perth LGA area.   

• It is clearer to illustrate spatial variations of vehicle crashes at the LGA scale level.   

• Except for the magnitude differences, six types of hourly and weekly MVCs have similar temporal 
patterns. Most of them occurred from 8AM to 5PM on weekdays. 

• Hit-object SVCs peak between 11PM and 3AM on weekends. In contrast, hit-pedestrian SVCs peak 
around 8AM, 12 PM, and 3PM to 5PM on workdays when people are travelling between work and 
home or city workers are out for lunch.   

• It is possible to compare hotspots of the SVCs over space and time by integrating spider graphs into 
Comap and thereby enhancing understanding of location and time dependence and location 
advantage (or in our case, location disadvantage). 

The techniques used here have the potential to help decision makers in developing effective road safety 
strategies. 
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1. INTRODUCTION 

Over 1.2 million people die each year on the world’s roads and 20 to 50 million suffer non-fatal injuries. 
Young people constitute the highest number of deaths (WHO, 2009).  While there are direct and indirect 
positive impacts associated with road transportation, increasing road use places a significant burden on 
people’s health especially relating to traffic injuries. Understanding the spatial and temporal pattern of 
vehicle crashes is critical in developing location-based road safety strategies to minimise fatalities.   

While research into the spatial and temporal analysis of single-vehicle crashes (SVCs) exists, comparison 
between SVCs and multiple-vehicle crashes (MVCs) is scarce. Ivan et al.(1999) investigated the differences 
in causality factors for SVCs and MVCs on two-lane roads. SVC crash rates were found to decline when 
traffic intensity and sight distance increased, which was opposite to MVCs. Probabilistic models of 
motorcyclists’ injury severities in SVCs and MVCs were estimated by Savolainen and Mannering (2007). 
They summarised statistics such as rider characteristics and behaviour, roadway and crash characteristics and 
identified differences between SVCs and MVCs. Geedipally and Lord (2010) discovered that the confidence 
interval  was  increased by modelling SVCs and MVCs, which confirmed different characteristics for each.  

This paper investigates spatial and temporal distribution of SVCs and MVCs in Western Australia with the 
aim of geo-visualisation and comparison. The objectives of this study are: 

• Investigate temporal variations of SVC and MVC frequencies in Western Australia .   

• Investigate spatial distribution of SVCs and MVCs 
at different scales 

• Combine the spatial and temporal analyses to 
determine how the spatial distribution of SVCs and 
MVCs varies over time 

2. METHODS 

2.1.  Study area and data collection methods 

This paper is based on data obtained from the Main Roads 
Department in Western Australia. The Main Roads database 
contains information about all police-reported car crashes in 
Western Australia. All crashes involving single and multiple 
vehicles between 1999 and 2008 were analysed. The study 
area and the distribution of all crashes are illustrated in 
Figure 1. The crash categories are derived from the “Nature” 
attribute of the crash data where the values 1 to 6 represent 
MVCs and values 7 to 10 represent SVCs (see Table 1).    

2.2. Kernel Density Estimation (KDE) 

Modelling hot spot areas provides insight and understanding 
into the dependence of events within the spatial processes 
(Nicholson, 1997). To investigate spatial patterns of SVCs 
and MVCs, Kernel Density Estimation (KDE) was 
undertaken using the ArcGIS 10 Spatial Analyst tool (ESRI, 2010). This method calculates density of 
features (crashes) within the neighbourhood and 
around those features. Conceptually, a 
neighbourhood or “kernel” is defined around the 
points. The number of points that fall within the 
neighbourhood is totalled and divided by the area of 
the neighbourhood (Silverman 1986). The KDE 
parameters used in this study is based on Equation 
(1) adopted from Silverman (1986).   

Figure 1. Distribution of all SVC in Western 
Australia 1999-2008. 
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It can be seen that the kernel estimator depends on two parameters – the bandwidth (h) and the kernel density 
(K) (Silverman, 1986; Flahaut et al., 2003). Flahaut et al. (2003) mentions that for any given kernel, the 
bandwidth or smoothing parameter is “critically important” for the kernel estimator. When h equals the size 
of the region, density remains the same throughout the region. On the other hand, individual points are 
highlighted when a very small bandwidth is used (O'Sullivan and Unwin 2003). Silverman (1986) suggests a 
“subjective” approach for exploratory purposes and an “automatic” choice for subsequent smoothing 
provided the statistical model and hypothesis are accepted. The bandwidth choice for this study has been 
based on experimentation or until an appropriate estimation has been produced.  

2.3. Spatio- temporal zooming theory 

Scale plays a vital role in influencing people’s perception of space and time (Freundschuh and Egenhofer, 
1997). People tend to abstract spatial and temporal information from their environment at different scales and 
conduct mental shifts among these different scales (Hornsby, 2001). Scale is about extent: a large scale 
shows fine details and high spatial or temporal resolutions while a small scale shows coarse details and low 
resolution (Longley et al., 2001). Effective visualisation and analysis depend critically on choosing an 
appropriate  scale in order to derive a meaningful outline of the data (Shchaffer et al., 1996).   

Different levels of detailed spatial and temporal information can be represented in one map using zooming 
theory. A single zooming model displays a sequence of layers of gradually simplified representations from 
fine-grained views (articulations) to coarser-grained views (abstractions) for a given geographical map. 
Multiple zooming techniques can focus on information of interest with high resolution and present 
background information with low resolution in one map (Frigioni and Tarantino, 2003; Hornsby and 
Egenhofer, 2002). This paper applied single zooming theory to the data to illustrate spatial patterns of SVCs 
at three scales: Western Australia as a whole, the Perth metropolitan area, and the Perth Local Government 
Area (LGA) (see Figure 5).   

2.4. Spider Plots 

To visualise and explore temporal patterns of both SVC and MVCs, spider plots are employed.  Temporal 
analyses are often shown in line charts and circular plots since they illustrate continuity and chronological 
order (Asgary, 2010). Subsets of the crash dataset are used to explore the temporal nature and distribution of 
SVCs and MVCs. Spider plots are provided and compared for SVCs and MVCs for Perth LGA. Figure 4 
illustrates an example spider plot used in this analysis.   

2.5. Comap 

Comap is a method of exploratory data analysis to visualise changes in a pair of variables over time (Asgary 
et al., 2010). This method can investigate the relationship between the location of crashes and when they 
occurred. The steps involved in performing a Comap analysis are outlined by Asgary et al. (2010) as (1) 
Subset vehicle crashes into different classes based on time interval in which they occur such as 1AM to 
3AM. (2) Run a KDE analysis for each subset to generate 
hot-spot maps. (3) Illustrate hot spot maps according to the 
ordered time intervals. Asgary et al. (2010) states that the 
process of classification may affect the result of the Comap 
analysis. For example, creating too small a subset may 
prevent a pattern from being easily discerned. Hence, he 
suggests that class boundaries should overlap and each 
class must contain the same number of events.  

3. RESULTS 

3.1. General comparison of SVCs and MVCs 

As mentioned in section 2, the crash nature values 1 to 6 
represent MVCs and the values 7 to 10 represent SVCs.    

Table 1 shows comparison of crash nature with (a) showing 
distribution of crashes by metropolitan area and LGA while 

 

Table 1. Summary of Vehicle Crashes by 
nature   

Overall Totals AVC SVC % AVC MVC % AVC
WA 381294 68570 0.18 288268 0.76

Metro 313965 38899 0.12 255983 0.82

LGA 22842 1754 0.08 18999 0.83
(b)  
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(b) shows comparison between the overall total (WA), metropolitan area and LGA area as percentages. The 
column “% Crash Nature” in (a) is the percentage of crash frequency to the total number of crashes within 
the area. Major MVCs are Rear End (41%), Sideswipe Same Direction (21%) and Right Angle (15%). Major 
SVCs are hit Objects (4%) in Perth LGA. The proportion of the SVCs in the Perth LGA compared the MVCs 
within the same area is relatively small probably due to the high density of vehicles in the Perth LGA area.   

3.2. Spatial analysis 

KDE provides us with an overview 
of the spatial variations of crashes. 
A spatial window or kernel is passed 
over the areas of interest. The result 
is a continuous surface of density 
estimates with high values depicted 
as peaks. It also reveals hot spot 
areas of the phenomena under study. 
More detailed methods can be found 
in (O’Sullivan & Unwin; 2003; 
Silverman 1986). Spatial analysis 
performed for the three areas of 
interest is shown in Figure 2, which 
illustrates how spatial scale affects 
the level of information exhibited. 
For instance, density estimation for 
all crashes for Western Australia 
shows Perth is the major hot spot area— more than 80 percent of the total crashes in WA occur in the Perth 
metropolitan area and LGA. When zooming into these areas, more detailed vehicle crashes patterns were 
revealed. Figure 3 shows that it is possibly clearer to illustrate spatial variations of vehicle crashes at Perth 
LGA scale level.  The differences of spatial patterns between SVCs and MVCs will be discussed in section 
3.3. 

3.3. Temporal analysis 

Figure 3 shows the temporal distributions for single and multiple vehicle crashes by hours of the day within 
the metropolitan and LGA for the period 1999 to 2008. As illustrated, there is a distinct difference in the 
temporal distribution for both crash categories. For MVCs, distribution by hour shows fluctuations in crash 
numbers between 8AM and 5PM. The crash frequency throughout the day shows a sharp increase between 
5AM to 8AM and 2PM to 3PM and a gradual increase between 3PM and 5PM (peaking at 5PM). A sharp 

Figure 2. KDE results for SVCs and MVCs at different scales. 

Figure 3. Number of SVCs and MVCs at the  Perth Metro and LGA, 1999-2008 
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decrease is also seen at 9AM and between 5PM and 8PM.  These patterns suggest that the MVCs are more 
likely to occur at peak hours. 

In contrast to MVCs, temporal analysis of SVCs shows a relatively steady distribution throughout the day for 
the metropolitan area. Figure 3 
shows a steady but gradual 
increase throughout the day and 
reveals high incidence between 
2PM and 12AM, inferring that a 
higher number of SVCs occur 
within this time period. While 
MVC frequency variation for the 
metropolitan and LGA areas are 
not distinct, as can been seen from 
Figure 3, the SVC plot shows an 
intriguing pattern. The frequency 
of SVCs in the metropolitan area is 
generally distributed uniformly 
whereas those in the LGA seem to 
fluctuate distinctly throughout the 
day. Further investigation of the 
factors might shed some light on 
this.    

Spider graphs were used to 
illustrate the temporal pattern of 
SVC and MVCs by nature (Figure 
4 and Table 1). Except for the magnitude differences, six types of hourly and weekly MVCs have similar 
temporal patterns. Most of them occurred during between 8AM to 5PM on weekdays. While four types of 
SVCs show different distributions. Hit-object SVCs peak between 11PM and 3AM on weekends. In contrast, 
hit-pedestrian SVCs peak around 8AM, 12PM, and 3PM to 5PM on workdays when people travel between 
work and home or city workers are out for lunch.  Non-collision SVCs peak between 8AM and 3PM.  

3.4. Spatial and temporal analysis 

In the Comap (Figure 5), each time interval (such as midnight to 3AM) is labelled with a number from 1 to 8 
so that we can identify temporal and spatial patterns of vehicle crashes. Analyses show that there are 
variations in crash distribution throughout the day. For example, it is evident the MVCs increase gradually 
from 8 AM to 5PM, and clusters of MVCs shift from the Central Business District (CBD) to the Northbridge 
entertainment district from day time to night time. This is suggestive of the influence of social factors of 
Northbridge at night.    

SVCs in Figure 5 are a little more dynamic than MVCs. The hot spots are moving around city centre (St 
George’s Terrace, Barrack Street, William Street and Wellington Street), the Northbridge entertainment 
district and the west (Subiaco). Hit-pedestrian vehicle crashes at night are evidently clustered in the northern 
part of the suburb (the Northbridge entertainment district). During the day pedestrian crashes are more 
common in the city centre (St George’s Terrace, Barrack Street, William Street and Wellington Street) and 
some clustering occurs in the area to the west (Subiaco). Object crashes do not exhibit the same degree of 
clustering as pedestrian crashes. However, they do appear to be most common on the freeways and 
causeways. In the afternoon and evening many occur on Barrack Street, while late at night they tend to be 
located on Wellington Street between the Barrack and William Street intersections.  William and Barrack 
streets feed into the bus and train stations, which might explain why there are so many pedestrians around. 

 

 

 

Figure 4. Spider graph of VCs by nature. 
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4. DISCUSSIONS AND CONCLUSIONS 

The main objective of this analysis was to investigate temporal, spatial and spatial-temporal structure of 
single and multiple vehicle crashes. To achieve this, temporal and spatial analysis was performed for 
different spatial scales, especially metropolitan and LGA areas, and then combined using Comap.   

Persaud & Mucsi (1995) found that MVCs were more likely to occurred during the daytime while the light 
conditions were good, whereas SVCs mostly occur at night. Our findings confirmed the MVCs pattern. 
However, the temporal distribution of SVCs varied between the metropolitan area and Perth LGA area. SVCs 
occurred more frequently after sunset than during the day in the metropolitan area. But, more SVCs were 
likely to occur during the day in Perth LGA area, especially from 2PM to 5PM. This might be due to the high 
percentage of workers or shoppers in the city, which causes more frequent pedestrian vehicle crashes.  We 
also discovered that hit-pedestrian vehicle crashes mostly occurred during the day, while hit-object vehicle 
crashes are more likely to occur at night.       

To demonstrate the clustering of crash frequency, thereby revealing areas of spatial hotspot, KDE was 
applied. While analysing at a larger spatial scale provides a general perception of the nature of crashes, it 
does not reveal underlying trends and patterns that might be beneficial in understanding the characteristics of 
vehicle crashes. For instance, KDE analysis of crashes at an LGA level revealed that most crashes occur at 
intersections and midblock. Therefore, this suggests some further analysis is needed concerning the causal 
factors at hot spot areas.   

Comap was used to understand the spatial variation of crashes over a certain time interval. Comap methods 
can be either univariate, (Figure 5) showing how crash density varies over time, or bivariate (Figure 6) to 
compare hit-pedestrian or hit-object vehicle crashes. This information is vital in risk analysis of road 

 

Figure 5. Comap of VCs by hours of a day 
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segments or road category, consequently leading to improved road safety. Comap is also able to compare 
hotspots of SVCs over space and time by integrating spider graphs, and thereby enhancing the understanding 
of location and time dependence and location advantage (or in our case, location disadvantage). 

Classifications inherent in the Comap method must be considered when using this technique. Because time 
point data are grouped into time intervals, the intervals selected will affect the results of the density 
estimation. Natural breaks were used for purposes of classification as it better highlighted overall temporal 
distribution. 

Appropriate bandwidth choice will affect the results of kernel density estimation. Suitable bandwidth was 
selected relative to the spatial scales used in the estimation. The use of unsuitable bandwidths may lead to 
either more or less smoothing of the discreet data points, producing different maps. Thus, care should be 
taken in determining bandwidths as well as the interpretation of resulting maps.  

It is evident that the nature and structure of SVCs and MVCs in Western Australia varies with location and 
time. Analyses reveal clustering at intersections and midblock for both crash categories and therefore would 
be ideal for further research. This would shed light on the dynamics of crashes at these locations and provide 
vital information on allocation of road safety measures.     
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